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Abstract

Camera modelling and calibrating is a crucial problem for further metric measuring
of a scene. A lot of different calibrating techniques and surveys about calibration
have been presented in last years. However, it is still difficult to go into details of
a determined calibrating technique and to compare it with respect to the others.
Mainly, this problem emerges due to the lack of notation standardization and the
different existing methods of accuracy evaluation. This article presents a detailed
review about five of the most used calibrating techniques and a great deal of effort
has been done to present them by using the same notation. Moreover, the techniques
have been implemented and the accuracy evaluation results are shown in the article.

1. INTRODUCTION

Camera calibration is the first step toward computational computer vision.
Although some information from the measuring scenes can be obtained from
uncalibrated cameras, calibration is essential when metric information is re-
quired. Some applications of this capability includes:

1. Dense reconstruction: Each image point determines an optical ray passing
through the focal point of the camera toward the scene. Use of more than
a view of a motionless scene permits to cross both optical rays and get
the metric position of the 3D point.

2. Visual inspection: Once a dense reconstruction of a measuring object is
obtained, it can be compared with an stored model in order to detect
some manufacturing imperfections as bumps, dents and cracks.
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3. Object localization: From points of different objects, the position relation
among these objects can be easily determined, which has many applica-
tion in industrial part assembly and obstacle avoidance in robot naviga-
tion, among others.

4. Camera localization: When a camera is placed at the hand of a robot
arm or on a mobile robot, the position and orientation of the camera can
be computed through the localization of some known landmarks in the
scene. If these measures are stored, a temporal analysis permits to obtain
the trajectory of the robot, which can be used in robot control and path
planning.

Camera calibration can be classified according to several different criteria.
For instance, 1) Linear versus nonlinear camera calibration (usually differenti-
ate by the modelling or not of the lens distortion [1]). 2) Implicit versus explicit
calibration. Implicit calibration is the process of calibrating a camera without
explicitly computing its physical parameters. Although, the results can be
used for 3D measurement and generation of image coordinates, they are use-
less for camera modelling as the obtained parameters do not correspond to the
physical ones [2]. And 3), methods that use known 3D points as a calibrating
pattern [3], and others that use some geometrical properties of the scene such
as vanishing lines. Moreover, the approaches can be classified with respect to
the calibrating method used to estimated the parameters of the camera model:

1. Non linear optimization techniques. The camera parameters are obtained
through iteration with the constraint of minimizing a determined func-
tion. The advantage of these techniques is that it can calibrate nearly
any model and the accuracy usually increase by increasing the number
of iterations. However, these techniques require a good initial guess in
order to guarantee the convergence. Examples: classic photogrammetry
and Salvi [4].

2. Linear techniques which compute the transformation matriz. These tech-
niques use the least squares method to obtain a transformation matrix
which relates 3D points with their projections. However, these techniques
can not model lens distortion. Moreover, it’s sometimes difficult to ex-
tract the parameters from the matrix due to the implicit calibration used.
Examples: Hall [5], Toscani-Faugeras [3] and Ito [1].

3. Two-step techniques. These techniques use a linear optimization to com-
pute some of the parameters and, as a second step, the rest of parameters
are iteratively computed. These techniques permit a rapid calibration re-
ducing considerably the number of iterations. Moreover, the convergence



is nearly guarantee due to the linear guess obtained in the first step.
Examples: Tsai [6], Weng [7] and Wei [2].

This article is a detailed survey of some of the most used calibrating tech-
niques. A great deal of effort has been done to present the survey using the
same notation. Moreover, the techniques have been implemented and compar-
ative results are shown and discussed.

The article is structured as follows: Section 2 deals with camera modelling.
Section 3 describes some techniques of camera calibrating. Section 4 explains
some methods for the accuracy evaluation of camera calibrating techniques.
The paper ends with conclusions.

2. CAMERA MODEL

The model is a mathematical formulation which approximates the behaviour
of any physical device, i.e a camera. In such a case, the internal geometry and
the position and orientation of the camera in the scene is modelled. There are
several camera models depending on the desired accuracy. The simplest model
is the one proposed by Hall [5]. The goal is to find a relationship among the
3D points of the scene with their 2D projecting point in the plane image. This
relationship is approximated by means of a transformation matrix,
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Then, given a 3D point P, with respect to the metric world coordinate
system, applying the transformation matrix proposed by Hall, the 2D point P,
in pixels with respect to the image coordinate system is obtained. However,
other more complex models decompose the transformation of the point P,, into
the point Py in 4 steps, explained in the following (see also figure 1):

1. The first step consists on relating the point P, from the world coordinate
system to the camera coordinate system.

2. Next it is necessary to carry out the projection of the point P, on the
image plane obtaining the point P,, by using a projective transformation.

3. The third step models the lens distortion, based on a disparity of the real
projection. Then, the point P, is transformed to the real projection Pj.

4. Finally, the last step consists on carrying out another coordinate system
transformation in order to go from the metric coordinate system of the
camera to the image coordinate system of the computer in pixels.
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Figure 1: The geometric relation between a 3D point and its 2D projection.

In the following four different camera models (Faugeras-Toscani [3], Faugeras-
Toscani with distortion [4], Tsai [6] and Weng [7]) are explained in detail con-
sidering how they carry out this four steps.

2.1. Changing from the world to the camera coordinate system

Changing the system of coordinates of the world to the system of coordinates
of the camera is carried out in the same way in the 4 surveyed models. This
transformation is modelled using a translation vector and a rotation matrix,
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2.2. Projection of the point 3D on the image plane

Consider that any optical sensor can be modelled as a pinhole camera. That
is, the image plane is located at a distance f from the optical centre O¢, and
it is parallel to the plane defined by the coordinate axis X and Y. Moreover,
given an object point P, related to the camera coordinate system, if it is
projected through the focal point O¢, the optical ray intercepts the image
plane at the 2D image point P,. This relation is shown in equation. The four
reviewed models solved the projective transformation by using equation (3).
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2.3. Lens distortion

The third step is based on modelling of the distortion of the lenses. Each
surveyed model proposed different approaches. Equation (4) transforms the
point P, without distortion to the point Py with distortion, d, and J,, represents
the applied distortion.

CXu = CXd + 6z CYu = CYd + 5y (4)

The camera model proposed by Faugeras-Toscani [3] does not model the lens
distortion, therefore P, and P; are the same point. In this case J, and ¢, are
Zero.

The model of Faugeras-Toscani can be improved by modelling the lens dis-
tortion [4] as also considered Tsai [6]. This displacement can be modelled by
equation (5), which considers only the first coeflicient k.

8y = k1O X,y (CXd2 + Cde) 5, = ki CYy (CXd2 + Cde) (5)

The model of Weng [7] considers three types of distortion: radial distortion,
decentering distortion and thin prism distortion. The total distortion will be
the sum of the three distortions like it is shown in the following equations,

5m - 6wr + 5$d + 6wp 51} = 6117' + 6yd + 6?/17 (6)

The radial distortion is modelled in the same way Tsai did. The decentering
distortion is due to that the optic centre of the lenses is not correctly aligned
with the centre of the camera [7]. This type of distortion introduces a radial
and tangential distortion. Moreover, the thin prism distortion arises from im-
perfection in lens design and manufacturing as well camera assembly. This type
of distortion can be modelled adding a thin prism in the optic system, causing
radial and tangential distortions [7]. Adding the three types of distortions the
following equations are obtained,

6z = (91 +93) CXd2 + g4CXdCYd + g1CYd2 + kX, C’de2 + CYd2
8, = 920X + 9O XaOYa + (g2 + 90) OYa" + I Ya (X + Y

2.4. Changing from the camera to the computer image coordinate
system

The last step deals with relating the P; point with respect to the computer
image plane in pixels. This change of coordinates can be made in two different
ways according to the surveyed camera models.



The camera models proposed by Faugeras-Toscani, Faugeras-Toscani with
distortion and Weng use the following equations,

IX, = -k, X4+ ug Yy = —k,“ Yy + vo (8)

where, (k,,k,) are these parameters transforms from metric measures with re-
spect to the camera coordinate system to pixels with respect to the computer
image coordinate system; and (ug, vg) are these components defines the pro-
jection of the focal point in the plane image in pixels, i.e. the principal point.

The camera model of Tsai proposed another equations to carry out the same
transformation. The equations are the following,

TXg=s,d, '“Xa+ug  Vag=d, 'Yy + 0 9)

where, (ug, vg) are the coordinates of the projection of the focal point in the
plane image in pixels; s, is the image scale factor; d, is the centre to centre
distance between adjacent sensor elements in the X direction; d, is the centre
to centre distance between adjacent sensor elements in the Y direction; N, is
the number of sensor elements in the X direction; ]X/I is the number of pixels

in a line as sampled by the computer; and d, = dIN—;I.

3. CALIBRATING METHODS

The calibrating method depends on the model used to approximate the
behaviour of the camera. The linear models, i.e Hall and Faugeras-Toscani,
use a least-squares technique to obtain the parameters of the model. However,
non-linear calibrating methods as: Faugeras-Toscani with distortion, T'sai and
Weng; use a two stages technique. They carry out a linear approximation with
the aim of obtaining an initial guess for a further iterative optimization.

3.1. Method of Hall

The method used to calibrate the model of Hall is based on expressing
equation (1) in the following form,
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Then, consider that the 3D position of a set of n calibrating points and their
corresponding 2D projection in the image are known (n should be bigger or
equal to 6). Moreover, if we consider without lost of generality that Asy, = 1,
all the elements of the transformation matrix A can be obtained by using a
linear least-squares technique as the pseudo-inverse [5].



3.2. Method of Faugeras-Toscani

In order to obtain the complete model of the camera, it is necessary to
combine equations (2), (3), (4) and (8), obtaining (11).
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Note that equation (11) can be expressed in matricial form in the following

way, where a,, = — fk, and a, = — fk,.
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Then, equation (12) is combined in the following way,
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At that time, a set of 5 parameters are considered X = (11,73, T3,C1,C2)7,
which are Ty = :;314, T = 2;:4,.7-‘3 = A%l', 4 = ﬁ;;‘ and Cy = ﬁg;‘. T.hen7
the value of the vector X is obtained by using a linear least-squares technique.

Finally, the camera parameters are extracted from X by using equation (12).

3.3. Method of Faugeras-Toscani with radial distortion

When a good accuracy is necessary, the linear method of Faugeras-Toscani
becomes useless. However, it can be easily modified including the radial lens
distortion as it has been shown in section 2.3. Nevertheless, the equations
turns into non-linear and the least-squares techniques has to be replaced by an
iterative algorithm.

Note that combining equation (2), (3), (4) and (5), equation (14) is obtained.
Moreover, equation (8) has to be used to transform from metric coordinates to
pixels.

C C 2 _ r11 Y Xw+r12W Y +risY Zy tts
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where x = (, 3,7, ta, ty, ts, ku, kv, 20, vo, k1)~ is the vector of unknowns which

can be computed by using an iterative method as, for instance, the method of
Newton-Raphson or Levenberg-Marquardt, among others.



Note that one of the problems of convergence in iterative algorithms is the
initial guess. However, an initial guess can be obtained calibrating the linear
method of Faugeras-Toscani without lens distortion, and assuming k; = 0.

3.4. Method of Tsai

The non-linear method of Faugeras-Toscani is based on fixing the initial
guess without considering lens distortion. Moreover, a large number of itera-
tions is usually necessary to obtain an accurate value of the camera parameters.
The method of Tsai [6] models also the radial lens distortion but assumes that
there are some parameters of the camera that are distributed by manufactur-
ers. This fact reduces the number of calibrating parameters in the first steps.
However, all of them are iteratively optimized in the last step.

Firstly, by combining equation (2), (3), (4) and (5), equation (14) is ob-
tained. Note that, at this point Tsai’s model is equivalent to the previous one
of Faugeras-Toscani with distortion. Note also, that the points have been ex-
pressed in metric coordinates instead of pixels for easier comprehension (use
equation (9) to express the points in pixels)

Once © X, and “Y are obtained in metric coordinates by using equation (9),
they can be expressed in pixels /X, and 'Yy, assuming that s, = 1 and the
principal point is located in the physical centre of the image plane. Moreover,
by using equation (14) and counsidering a radial lens distortion, some geomet-
rical principles can be applied, which leads us to the following substitution of
unknowns.

— 1 — 41
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The a; unknowns are obtained by using least-squares technique. Moreover,
assuming that the orientation vectors of a rotation matrix are orthogonal, t,,
t, and © Ry are obtained. This complete the first three steps of the method of
Tsai. However, two more steps are programmed in order to calculate f, t, and
ki. Firstly, f, t, are approximated by least-squares, considering k1 = 0. Then,
this approximation determines an initial guess, which is used by an iterative
algorithm to obtain f, £, and k; accurately. Finally, all the parameters are
optimized iteratively with the aim of obtaining an accurate solution.

3.5. Method of Weng

The method of Tsai is based on modelling radial lens distortion. The accu-
racy obtained by Tsai is very good and enough for most of the applications.
However, in same cases where the lens of the camera need to be accurately
modelled a simple radial approximation is not enough. Weng [7] improves the



model proposed by Faugeras-Toscani [3] including three types of lens distortion
as it is explained in section 2.3. Then, by using equations (2), (3), (4) and (7),
equation (16) is obtained. As in the previous models, the 2D point coordinates
are expressed in metric (use equation (8) to transform them to pixels).
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Then, equations (17) are obtained.
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At this point, W = (W, Wy, W, wy, ws, we)T is computed by using a lin-
ear least-squares technique. Then, wg is assumed to be the unity in or-
der to extract from W the values of all the parameters of the vector m =
(U0, Vo, Qyy Qs by By, Ty, B, ’y)T, without considering distortion. Furthermore,
© Ry is recalculated in order to keep orthogonality by using eigen values, and
the rest of parameters are recalculated.

Then, an iterative method is used to recalculate, for the third time, the
values of m, assuming zero distortion. Finally, a two stages iterative method is
used. In the first stage, the parameters of d = (kl,gl,gg,gg,g4)T are linearly
obtained by using least-squares, and the second stage computes the values of
m iteratively. This stages are repeated as many times as needed depending on
the desired accuracy.

4. ACCURACY EVALUATION

The systems used to evaluate the accuracy of camera calibrating methods
can be classified into two groups depending on whether the accuracy is mea-
sured from the 3D or 2D points. In the following some of the most used methods
of accuracy evaluation are described.

4.1. 3D Measurement

1. 3D position obtained from stereo triangulation. First, acquire two images
of a set of 3D test points whose 3D coordinates are known. Second, com-



4.2,

pute the estimated 3D coordinates of the same points from their projec-
tions using the calibrated parameters. Finally, compare the discrepancy
between real and estimated positions.

Radius of ambiguity in the calibrating plane. First, acquire a set of 3D test
points, lying on a plane of test, whose coordinates in the world coordinate
system are known. Second, for each image point use the calibrated model
to back project the ray from the focal point through the 2D projection.
The intersection of the optical ray with the plane of test determines a
point. Then, the distance from the 3D test point to the intersecting
points defines a radius of ambiguity around the 3D test point.

Distance with respect to the optical ray. This method is a generalization
of the previous one. In this case, the discrepancy to be measured is the
distance of the 3D test points from the optical ray generated by their
projections.

Normalized Stereo Calibration Error. The array of pixels in an image is
projected back to the scene so that each back-projected pixel covers a
certain area of the object surface. This area indicates the uncertainty
of the basic resolution at this distance. Where (¢ X, Yy, € Zy;) is
the real coordinates of the i;; 3D object point and (CXwi, CYwi7 CZW-)
is the coordinates obtained by back-projecting the pixel and intersecting
it with the surface plane. See Weng [7] for detailed information. Then,
it is defined the Normalized Stereo Calibration Error (NSCE) as show
equation 18.

P (S S e S R R
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1
2D Measurement

Accuracy of distorted image coordinates. First, take an image of a set of
3D test points. Then, calculate the 2D position on the image plane of
each 3D point, taking into account lens distortion. Accuracy is obtained
measuring the discrepancy between the real 2D points and the estimated
one.

Accuracy of undistorted image coordinates. First, take an image of a
set of 3D test points. Then, calculate the linear projection of the 3D
points on the image plane. Besides, detect the real 2D points through
image segmentation and remove the distortion of lens by using the camera
model. Finally, accuracy is obtained measuring the discrepancy between
the linear projection and the undistorted points.



5. EXPERIMENTAL RESULTS

The five calibrating techniques have been implemented and their accuracy
measured by using the following criteria: 1) Distance with respect to the optical
ray; 2) Normalized Stereo Calibration Error; 3) Accuracy of distorted image
coordinates; 4) Accuracy of undistorted image coordinates.

Using a set of object ponits proposed by Tsai?. Table 1 shows the ac-
curacy measured by using the first criteria and second criteria, respectively.
Comparing the mean of the results obtained in both tables, we can see that
a relationship exists among the two methods. Both methods obtained similar
results if they are relatively compared that is, good calibrating algorithms ob-
tain acceptable accuracy results not depending on the evaluation method used.
Moreover, table 2 shows the results of calculating the accuracy by using the
third and fourth criteria, respectively.

3D position (mm) NSCE N° of

Mean o Max iterations
Hall 0.1615 0.1028 0.5634 n/a n/a
Faugeras 0.1811  0.1357 0.8707  0.6555 n/a
Faugeras NR® without distortion 0.1404  0.9412 0.0116  0.6784 20
Faugeras NR with distortion 0.0566  0.0307 0.1694  0.2042 20
Tsai 0.1236  0.0684  0.4029  0.4468 57
Tsai optimized 0.0565  0.0306  0.1578  0.2037 499
Tsai with principal point
of Tsai optimized 0.0593  0.0313  0.1545 0.2137 52
Tsai optimized with principal
point of Tsai optimized 0.0564  0.0305 0.1626  0.2033 355
Weng 0.0570  0.0305 0.1696  0.2064 200

Table 1: Accuracy of 3D Coordinate Measurement

2D distorted image (pix.) 2D undistorted image (pix.)

Mean o Max Mean o Max
Hall 0.2676  0.1979  1.2701  0.2676  0.1979 1.2701
Faugeras 0.2689  0.1997  1.2377  0.2689  0.1997 1.2377
Faugeras NR without distortion  0.2770  0.2046  1.3692  0.2770  0.2046 1.3692
Faugeras NR with distortion 0.0840  0.0458 0.2603  0.0834  0.0454 0.2561
Tsai 0.1836 0.1022 0.6082 0.1824 0.1011 0.6011
Tsai optimized 0.0838  0.0457 0.2426  0.0832  0.0453 0.2386
Tsai with principal point
of Tsai optimized 0.0879 0.0466 0.2277 0.0872 0.0463 0.2268
Tsai optimized with principal
point of Tsai optimized 0.0836  0.0457 0.2500 0.0830 0.0454 0.2459
Weng 0.0845  0.0455 0.2608 0.0843  0.0443 0.2584

Table 2: Accuracy of 2D Coordinate Measurement

2http://www.cs.cmu.edu/~rgw/TsaiCode.html
3Newton-Raphson



6. CONCLUSION

This article surveys five of the most used calibrating techniques. Effort has
been done to unify the notation among the five methods, so that they have
been presented in a way that the reader can understand them easily. We can
see that the differences among them are mainly in the step concerning the
modelling of lens.

Moreover, a survey on accuracy evaluation has been done. The five meth-
ods have been implemented and their accuracy analyzed. Results show that
only non-linear methods obtain a 3D accuracy smaller than 0.1 mm. with a
very good standard deviation. Moreover, the accuracy on the image plane of
non-linear methods is much better than linear methods. However, non-linear
methods are more time-consuming than linear ones. Obviously, the results only
prove something already demonstrated by authors. However, in this article the
five methods have been compared among them, so that the reader can choose
one or another method depending on their applications. Future work. it would
be useful if they could compare the same methods by artificially including noise.
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