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Lecture 11:
LoG and DoG Filters

CSE486
Robert Collins

Today’s Topics

Laplacian of Gaussian (LoG) Filter
  - useful for finding edges
  - also useful for finding blobs!

approximation using Difference of Gaussian (DoG)
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Recall: First Derivative Filters

• Sharp changes in gray level of the input
image correspond to “peaks or valleys” of
the first-derivative of the input signal.

F(x)F(x) F F ’’(x)(x)

xx

O.Camps, PSU

(1D example)
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Second-Derivative Filters

• Peaks or valleys of the first-derivative of the
input signal, correspond to “zero-crossings”
of the second-derivative of the input signal.

F(x)F(x) F F ’’(x)(x)

xx

FF’’’’(x)(x)

O.Camps, PSU
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Numerical Derivatives
See also T&V, Appendix A.2 

Taylor Series expansion

1    -2     1
Central difference approx
   to second derivative

add
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Example: Second Derivatives

I(x,y)

Ixx=d2I(x,y)/dx2

Iyy=d2I(x,y)/dy2

2nd Partial deriv  wrt x

2nd Partial deriv  wrt y

[  1   -2    1  ]

   1  
  -2 
   1  
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Example: Second Derivatives

Ixx Iyy

benefit: you get clear localization of
the edge, as opposed to the “smear”
of high gradient magnitude values
across an edge
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Compare: 1st vs 2nd Derivatives
Ixx Iyy

Ix Iy

CSE486
Robert Collins

Finding Zero-Crossings

An alternative approx to finding edges as peaks in
first deriv is to find zero-crossings in second deriv.

In 1D, convolve with [1 -2  1] and look for pixels 
where response is (nearly) zero?

Problem: when first deriv is zero, so is second.  I.e.
the filter [1  -2   1] also produces zero when convolved
with regions of constant intensity.

So, in 1D, convolve with [1 -2  1] and look for pixels
where response is nearly zero AND magnitude of
first derivative is “large enough”.
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I(x)I(x) I(x,y)I(x,y)

dd22I(x)I(x)
dxdx22

= 0= 0

xx

yy

||∇∇I(x,y)| =(II(x,y)| =(Ix x 
22(x,y) + I(x,y) + Iyy

22(x,y))(x,y))1/2 1/2 > > ThTh

tan tan θθ = I = Ixx(x,y)/ (x,y)/ IIyy(x,y) (x,y) 

F(x)F(x)

xx

dI(x)dI(x)
dxdx

> > ThTh

∇∇22I(x,y) =II(x,y) =Ix x x x (x,y) + (x,y) + IIyy yy (x,y)=0(x,y)=0
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Finite Difference Laplacian

Laplacian filter ∇∇22I(x,y)I(x,y)
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Example: Laplacian
I(x,y) Ixx + Iyy
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Example: Laplacian

Ixx Iyy

Ixx+Iyy
∇∇22I(x,y)I(x,y)
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Notes about the Laplacian:

•  ∇∇22I(x,y) is a SCALARI(x,y) is a SCALAR
–– ↑↑ Can be found using a SINGLE mask Can be found using a SINGLE mask
–– ↓↓ Orientation information is lost Orientation information is lost

•• ∇∇22I(x,y) is the sum of SECOND-order derivativesI(x,y) is the sum of SECOND-order derivatives
–– But taking derivatives increases noiseBut taking derivatives increases noise
–– Very noise sensitive!Very noise sensitive!

•• It is always combined with a smoothing operation:It is always combined with a smoothing operation:

SmoothSmooth LaplacianLaplacian
I(x,y)I(x,y) O(x,y)O(x,y)

O.Camps, PSU
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LoG Filter

• First smooth (Gaussian filter),

• Then, find zero-crossings (Laplacian filter):
– O(x,y) = ∇∇22((I(x,y) * G(x,y))I(x,y) * G(x,y))

O.Camps, PSU

Laplacian of 
Gaussian-filtered image

Laplacian of Gaussian (LoG)
-filtered image

Do you see the distinction?
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1D Gaussian and Derivatives
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Second Derivative of a Gaussian

2D2D
analoganalog

““Mexican HatMexican Hat””

O.Camps, PSU

LoG
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Effect of LoG Operator

LoG-filteredOriginal

Band-Pass Filter (suppresses both high and low frequencies)
Why?  Easier to explain in a moment.
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Zero-Crossings as an Edge Detector
Raw zero-crossings (no contrast thresholding)

LoG sigma = 2, zero-crossing
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Raw zero-crossings (no contrast thresholding)

LoG sigma = 4, zero-crossing

Zero-Crossings as an Edge Detector
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Zero-Crossings as an Edge Detector
Raw zero-crossings (no contrast thresholding)

LoG sigma = 8, zero-crossing
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Note: Closed Contours

You may have noticed that zero-crossings form
closed contours.  It is easy to see why…

Think of equal-elevation
contours on a topo map.

Each is a closed contour.

Zero-crossings are contours
at elevation = 0 .

remember that in our case, the height map is of a LoG filtered
image - a surface with both positive and negative “elevations”
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 Blob Detection

Lindeberg: ``Feature detection with automatic
scale selection''. International Journal of
Computer Vision, vol 30, number 2, pp. 77--
116, 1998.
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Pause to Think for a Moment:

How can an edge finder also be used to
find blobs in an image?



5

CSE486
Robert Collins

Example:  LoG Extrema

LoG
sigma = 2

maxima

minima
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LoG Extrema, Detail

LoG sigma = 2

maxima
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LoG Blob Finding
LoG filter extrema locates “blobs” 
     maxima = dark blobs on light background  
     minima =  light blobs on dark background

Scale of blob (size ; radius in pixels) is determined
by the sigma parameter of the LoG filter.

LoG sigma = 2 LoG sigma = 10
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Observe and Generalize

maxima

convolve
with LoG

result
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Observe and Generalize

LoG looks a bit 
like an eye.

and it responds
maximally in the
eye region!
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Observe and Generalize

Looks like dark blob 
on light background

LoG Derivative of Gaussian

Looks like vertical and
horizontal step edges

Recall: Convolution (and cross correlation) with a 
filter can be viewed as comparing a little “picture” of 
what you want to find against all local regions in the
mage.
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Observe and Generalize

Maximum response:
  dark blob on light background
Minimum response:
  light blob on dark background

Key idea: Cross correlation with a filter can be viewed 
as comparing a little “picture” of  what you want to find 
against all local regions in the image.

Maximum response:
  vertical edge; lighter on left
Minimum response:
  vertical edge; lighter on right
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Approximating LoG with DoG

M.Hebert, CMU

LoG can be approximate by a Difference of two 
Gaussians (DoG) at different scales

1D example

CSE486
Robert Collins

Efficient Implementation

LoG can be approximate by a Difference of two 
Gaussians (DoG) at different scales.

Separability of and cascadability of Gaussians applies
to the DoG, so we can achieve efficient implementation
of the LoG operator.

DoG approx also explains bandpass filtering of LoG
(think about it.  Hint: Gaussian is a low-pass filter)

CSE486
Robert Collins

Back to Blob Detection

Lindeberg: blobs are detected
as local extrema in space and 
scale, within the LoG (or DoG)
scale-space volume.
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 Blob Detection

Gesture recognition for
the ultimate couch potato
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Image Coding
• Coarse layer of the Gaussian pyramid predicts the

appearance of the next finer layer.

• The prediction is not exact, but means that it is not
necessary to store all of the next fine scale layer.

• Laplacian pyramid stores the difference.
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Image Coding

256x256 128x128 32x3264x64

256x256 128x128 64x64

The Laplacian Pyramid as a Compact Image Code   Burt, P., and Adelson, E. H.,
IEEE Transactions on Communication, COM-31:532-540 (1983).

takes less bits to store
compressed versions of
these than to compress
the original full-res
greyscale image


