ESTIMATING ACCURACY OF PHOTOGRAMMETRIC
DATA —MECHANISM AND IMPLEMENTATION

By Sagi Filin’ and Yerahmiel Doytsher”

ABSTRACT: A method for estimating the accuracy of data collected from aerial
photographs is presented. The emphasis is on its implementation in accuracy esti-
mation when gathering data for digital terrain model databases. The method, based
on error propagation of the photogrammetric solution process, facilitates the deter-
mination of accuracy for applications based both on direct photogrammetric mea-
surements and on digital terrain model databases in addition to determining the
measurements’ accuracy. The mechanism and implementation at different levels of
complexity is described, and various aspects of the proposed method are demon-
strated, especially with applications dealing with the altimetric component of the
terrain.

INTRODUCTION

Although GIS (geographic information system) databases cover and handle
many aspects of accurate representation, accuracy estimation is usually not
treated in terms of data management, analysis, and planning. At best, accu-
racy is estimated by way of absolute orientation SD (Standard Deviation).

Attempts to evaluate accuracy of data derived from aerial photographs and
from digital terrain model (DTM) layers are usually referred to in accuracy
evaluation as an empirical procedure, i.e., using statistical tests in order to
evaluate accuracy (Acharya and Chaturvedi 1997). A project conducted by
Working Group 3 of Commission 3 of the ISPRS (Torlegard et al. 1986)
applied comparative tests to 2,500 points collected from stereo-models of
different scales in order to evaluate the data and DTM accuracy. Other at-
tempts (Ley 1986) and (Li 1991) focused on determining an optimal data set
in order to estimate the accuracy of a DTM layer. It seems, however, that by
employing these methods an indirect strategy for accuracy estimation was
chosen, instead of referring to the actual problem and analyzing the factors
affecting the accuracy estimate of the ground coordinates. An attempt to refer
to the photogrammetric process was introduced by Blace (1987), who sug-
gested a summation of the aerial-triangulation SD, the absolute orientation
SD, and the sampling SD.

This paper describes a direct approach for evaluating the accuracy estimate
for data based on aerial photographs. The described method is constructed in
a general form that can fit any photogrammetric model.

ERROR PROPAGATION IN PHOTOGRAMMETRIC PROCESS

Photogrammetric orientation is the basic step for coordinate transformation
from the image reference coordinate system to the ground system. Its prin-
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cipal concept is the determination of the position and rotation angles of the
perspective center in relation to the ground coordinate system. However, dif-
ferent cameras models— varying from the calibrated frame camera to pano-
ramic photographs, SPOT images, etc.—prevent the determination of a uni-
versal model. (For instance, a SPOT-image orientation should include
dynamic parameters, such as linear and angular velocities.) In addition, an
orientation of a stereo-pair (the state in which GIS data are usually collected)
can be determined both by: using a two step procedure—relative orientation
and absolute orientation—or by separately computing an exterior orientation
for each photograph. Therefore, when discussing the error propagation, the
camera model and the orientation method should be defined.

The paper demonstrates the error propagation mechanism applied to the
commonly used stereo-pair frame photograph transformation model. This ori-
entation model is based on the two steps of relative and absolute orientation.
This commonly used model is considered to be complicated, since the error
propagation involves a transformation through two object spaces.

Relative Orientation

The relative orientation is the determination of the relative spatial position
between two adjacent photographs, making each homologous pair of rays
intersect in space. It is expressed by the coplanarity condition [Manual of
Photogrammetry (1980); Moffit and Mikhail (1980)] and is based on (A X
B)-C = 0, which is satisfied by the determinant

P, P, P,
u, v w|=0 4))
u v; w,

where the subscripts denote the image from which the measurements were

taken, and
u x
v| =Rk, ¢, )|y
w S

where x, y = photograph coordinates; f = focal length; P = vector crossing
through the two perspective centers; and R(k, ¢, @) = rotation matrix, formed
by the three rotation angles.

Computation of the transformation parameters using the least squares ad-
justment (Mikhail 1976) enables evaluation of their accuracy estimate. The
variance-covariance matrix, (2) presents them:

> = 3N @)
where the subscript rr in X, denotes the relative orientation, and
T
N = A4, o=V
n—u

where A = design matrix; V = residuals vector; n = number of observations;
and ¥ = number of unknowns.

Stereo-Model Reference Coordinate System
By generating the above spatial relation, a 3-D-reference coordinate system
is generated. Coordinates are computed by first applying the transformation
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parameters to the photograph coordinates and then applying the collinear rule.
By using rotation angles as transformation parameters, model coordinates are
computed by

w xw”
= br——————————
Zn *w"*u’ —wsu
X = Zur—
w
Z, (Vv v
=2l =+ —
Yo=3 *(w' w”) ®

Due to the SD of the relative orientation transformation parameters, the
model coordinates will inherit errors. These are evaluated by using error
propagation, where the variance-covariance matrix is defined as

D = Fax D «FI @

The F matrix components are computed by a derivation of (3) using the
chain rule, as demonstrated by the following:

Xy _ X ou

Ik du ok

¥ _ oY, ou

ok du ok

dZ, 0Z, du

T 5
K au*ax ®

Absolute Orientation

When a 3-D coordinate system is formed, an absolute orientation (a pro-
jective transformation including scaling, rotation, and translation between the
model and ground coordinates) can be formed. The mathematical model is

given by
X x Xo
Y| = *Rk, @, 0)xly| + | Y, ©)
VA z Zy

where X, Y, Z = ground coordinates; x, y, z = model coordinates; X,, Y,, Z,
= translation parameters between the two coordinate systems; and A = scale
between the two coordinate systems.

Transformation parameters are usually solved using an adjustment by
means of observation equations. However, observation equations disregard
some of the observations’ accuracy estimates. Ignoring this component may
affect the accuracy of the solution.

The absolute orientation model is composed of two sets of observations
—the model coordinates and the ground control points. The ground control
points accuracy estimate is determined by the measuring technique. In sur-
veying (conventional or global positioning system), coordinates accuracy is
a function of the position determination, while the accuracy of photogram-
metric controlled pass points is determined by the aerial-triangulation SD.
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The model coordinates accuracy estimate is evaluated as just described. In
both cases, however, the term accuracy should refer to the variances and the
covariances (if known, especially for the ground control points).

Since both the source and target reference coordinate systems contain er-
rors, adjustment by the observation equation model becomes inadequate. A
satisfying model that enables an inclusion of more than one observation per
equation is the adjustment-by-observations-and-conditions model, which is
expressed by

AxX +B+V—-W=0 @
And solved by
AT+B+P '+B) '+AxX + AT« B+P '+xB) '+ W =0 3)

where A = observations matrix; V = residuals vector; B = conditions matrix;
P = weight matrix; X = vector of unknowns; and W = vector of disclosures.
A transformation model that agrees with this adjustment model is expressed

by
X, + V,‘ X, + V.. X,
Y, +V, |=ARk ¢ )*|Y, +V, | +]|¥ 9)
Z, + Vz‘ Z, + VL. Z,

where the subscripts g and m denote the coordinate source, ground and
model, respectively.

Two elements are considered as supplements to the adjustment-by-obser-
vation equation model, the condition (B) and weight (P) matrices. P is com-
posed of the two variance-covariance matrices, the ground control points
matrix and the model matrix. B and P are defined as

mel
Vyml
( AxRss O ) ) me
B-= 0 * 5 10)
0 U] | Vo
Vygl
VZg]

an

: -1
23,_,3" model 0
P=
0 23"_3" ground
The variance-covariance matrix (Z,, = o3*N ") components are computed
by
»_ V'xPxV

N=A"B+P '+BHxA, ol=
n—u

Variance and Covariance Ground Coordinates
Ground coordinates measurement can be considered as an implementation
over the absolute-orientation transformation. Therefore their accuracy esti-
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mate is affected by the absolute-orientation parameters SD. This accuracy
estimate is evaluated by using error propagation. Two elements affect the
coordinates accuracy estimate: the absolute orientation transformation SD and
the model coordinates SD. The variance-covariance propagation is applied to
the projective transformation. :

Variance-covariance propagation expressing those two factors is defined as

zgm =Fyx >, +F] + Fox . +F] 12)

where 2, __,; = ground coordinates covariance matrix; .. = absolute orien-
tation covariance matrix; 2,,, = model coordinates covariance matrix; F, =
elements referring to the absolute orientation parameters; and F, = elements
referring to the model coordinates.

F, is derived from the projective transformation model as described above,
and F, is derived from 0L se/@Lgouma and will have the form of AxR.

One other component should be included in the variance-covariance ma-
trix, the sampling accuracy estimate. Some optional methods are valid for its
evaluation. Torlegard et al. (1986) evaluated the sampling accuracy as 0.2—
0.4%0 (per-mill) of the flight height for flat terrain and 1—-2%o for mountainous
terrain. Blace (1987) suggests using s..., as the accuracy estimate. It can also
be evaluated simply by using statistical tests referring to a specific operator.
No matter what method is adopted, the sampling accuracy estimate should
be added as a variance to the altimetric variances.

Evaluation of Mechanism

Some questions are raised with respect to the described mechanism, such
as what the contribution of its components might be, and what the necessities.
The more important questions ones refer to the impact of the accuracy esti-
mate of the ground control points, the effect of the accuracy estimate of the
measurements on the photogrammetric solution, and the actual contribution
of the accuracy estimate of the model coordinates. The following subsections
attempt to answer these questions.

The evaluation mechanism is presented via a 1:70,000-scale stereo-model
based on pass points with a 5 m accuracy estimate. Its absolute orientation,
based on adjustment by observation equations, has produced an SD of only
+2 m. This low value represents the residuals within an internal coordinate
system created by the photogrammetric block formation. In order to check
the effect of the accuracy estimate inclusion, several accuracy estimate values
for the ground controls were used. Among them were =1 m (an accuracy
estimate close to the actual residuals) and *5 m (the actual accuracy esti-
mate).

Model Coordinate SD Contribution

The effect of the model coordinates’ SD is discussed twice; first while
evaluating their effect on the absolute orientation, and second when the ac-
curacy estimate of a ground coordinate is discussed. Elimination of this com-
ponent will simplify and accelerate the accuracy estimate computation. First
their effect on the absolute orientation is discussed.

Evaluating the contribution of the model coordinates component showed
a nonnegligible value of about *1.5 m for a 1:70,000-scale stereo-model.
The computation is, however, affected not only by the model coordinates’
accuracy but also by the {ground coordinates’ accuracy. Both effects are em-
bedded within the BxP~'+B” matrix, but for the purpose of the analysis it
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is reduced to only variance summation ¢} + G2, (Where o, is the model
coordinates’ SD in ground values).

When an accuracy estimate of *1 m was used for the ground coordinates,
the model coordinates’ SD contributed a significant value to the gross ac-
curacy estimate. This is not only due to the variance summation but also due
to the covariance rates. However, when accuracy estimates of +3 m or larger
were used, the ground control accuracy became dominant and the model
coordinates’ contribution turned to be negligible. This is explained by vari-
ances summation.

Effect of Accuracy Estimate on Photogrammetric Solution

The term “photogrammetric solution’” relates to the transformation param-
eters, the photogrammetric solution SD, the residuals, and the variance-co-
variance matrix. In order to evaluate the accuracy estimate’s effect on the
photogrammetric solution, three cases were considered: adjustment without
accuracy estimate, adjustment by using an accuracy estimate of +1 m for
the ground control points, and adjustment by using =5 m ground control
points. As presented in (11), the accuracy estimate affects the adjustment via
the weight matrix.

Although different weight matrices were used, the variation in the trans-
formation parameters was minor (Table 1). These changes can be explained
by the function and effect of the weight matrices—a determination of the
significance of each observation equation with respect to the others, and with
only minor effect on the geometric construction. Because of these results the
variation between the residuals will be minor as well. The accuracy estimate
effect on the SD and variance-covariance matrices, however, was much more
dominant (Table 2). Since the variance-covariance matrix parameters as de-
rived from (12) effect the ground control point SD proportionally, this effect
becomes significant.

The results show that while the adjustment without accuracy estimation
produced optimistic results, and probably corresponds well to the photogram-
metric block, only the inclusion of the *+5 m accuracy estimate produced
more realistic values regarding the actual ground control accuracy. Thus the
inclusion of accuracy estimation of the ground control points when comput-

TABLE 1. Transformation Parameters for Computation with Different Weight
Matrices

Accuracy X Yo P K ¢ ®
estimation A (m) (m {m) (rad) (rad) (rad)
(1) (2 (3) 4) (5) (6) ) (8
None 55.71990 | 5,053.20 | 7,607.77 | 10,339.54| —1.61797| 0.00947 |—0.05900

*1m |55.71958 | 5,051.92 | 7,607.87 10,339.43|—1.61791] 0.00937 |—0.05902
+5m |55.71990| 5,053.14 | 7,607.78 |10,339.53|-1.61796| 0.00947 |—0.05901

TABLE 2. Transformation Parameters SD

Accuracy L H X Yo Z

estimation (m) A (m) (m) (m)

(1 2 (3) 4) (5) (6)
None 4.119 0.00007 3.5029 10.1565 3.7072
*lm 3911 0.00032 6.1644 10.7894 3.8764
*5m 1.000 0.00050 22.0634 61.9325 22.5913
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ing an absolute orientation is recommended, especially when the control
points are pass points. Although it seems that inclusion of the =1 m accuracy
estimate did not have any effect, the weight matrix effect becomes more
evident when analyzing the correlation matrices derived from the variance-
covariance matrices.

Ground Coordinates Accuracy Estimate

An analysis of the mechanism’s effect on the ground coordinates accuracy
estimate requires a discussion over two issues. The first concerns the affect
of the measurements’ accuracy estimation and the second concerns the actual
necessity of employing the entire formulation described above instead of
using a fixed value (usually the absolute orientation SD).

Experiments performed to evaluate the effects of including the measure-
ment SD are presented in Table 3. The first row presents the accuracy estimate
derived from an adjustment where no weight matrix was employed and by
using only the effect of absolute orientation. The second row presents the
same case but with the inclusion of the model’s SD contribution. The third
row presents the results of computation with a weight matrix while using
only the absolute orientation effect; the fourth row presents a complete com-
putation.

It can be seen that ignoring the accuracy estimate leads to an unrealistic
accuracy estimate for ground coordinates, while its inclusion has succeeded
in determining a realistic accuracy estimate for the computed ground coor-
dinates. The difference between the values at rows 3 and 4, caused by in-
cluding and omitting of the model coordinates SD, should be mentioned;
here their effect is more significant than the effect they had on the absolute
orientation adjustment.

In order to evaluate the rate of change of the accuracy estimate within the
stereo-model, three dispersed points were checked (Table 4). The first and
third were located on opposite edges of the model and the second was located
at the center. The accuracy estimate varies from *2.2 m in the center to +3.9
m at the edges, a variation of 1.5 m. A presentation of the accuracy estimate

TABLE 3. Accuracy Estimation Results (in Meters) for Different Computa-
tions

Accuracy estimation Point #1 Point #2
absolute/relative Vx Wy vz Vx vy Vz
4] @13 |@w 6 |6 | O
Absolute -—unweighted 130 | 130 | 148 | 0.83 | 0.83 | 0.83
Absolute and Relative—unweighted 1.61 158 | 2.14 | 0.89 1.00 1.61
Absolute— +5 m weighted 3.21 | 321 362 | 205 | 2.05 | 2.07
Absolute & Relative—*5 m weighted | 346 | 347 | 425 | 209 | 2.14 | 2.88

TABLE 4. Accuracy Estimate (in Square Meters) of Three Dispersed Points
within Stereo-Model

— Oy oy o,
(1) 2 (3) 4)
Point #1 12.0 119 18.1
Point #2 44 4.7 8.3
Point #3 12.1 11.7 155
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FIG. 1. Equal-Error Contours of Photogrammetric Model

variation throughout the model can be graphically formed by an equal-error
contours (contours based on the SD values) generation.

Based on an accuracy estimate of *5 m, Fig. 1 depicts the typical form
of the contours (errors depicted in centimeters), their variation, and their
magnitude at any given point. It seems that the rate of change from the
model’s center to its edges, which varies from *3 m at the center to +4.4
m at the edges (a nonnegligible difference of 1.4 m), points out that no fixed
value will adequately present the accuracy estimate of the ground coordinates.
Tests made on smaller-scale models with accurate ground control points have
shown that, although the accuracy estimate magnitude was smaller, the rate
of change (proportional) could not be ignored.

Covariance between Measurements

Relations between measurements, known as covariances, have not been
presented up to this stage. Although they are insignificant with respect to a
single measurement or separate measurements, their significance is revealed
when several measurements are involved in a computation. Table 5 presents
the variance-covariance matrix of three consecutive points (in a 2-km-dis-
tance step).

Analysis of the covariance ratios, regarding the “Z’’ component, shows a
97% correlation between the first two points and an 89% correlation between
the first and third points (a distance of 4 km). Analysis of the covariance rate
of change as a function of the distance (Table 6) depicts nonnegligible co-
variance values at distances that logically would not be related to each other.
Two points, 8 km apart, share a covariance that represents a 50% correlation.

TABLE 5. Variance-Covariance Matrix for Three Points

— Point #1 Point #2 Point #3
(1) (2 (3) 4)
Point #1 9.1 03 2.1 73 0.1 2.1 54 —-00 2.1
03 95 1.0 0.2 7.6 1.0 0.2 5.7 1.0
2.1 1.0 13.6 12 0.8 11.6 04 0.6 9.7
Point #2 73 0.2 1.2 6.1 0.1 1.2 50 0.0 12
0.1 7.6 0.8 0.1 6.5 0.8 0.1 53 08
2.1 1.0 11.6 12 0.8 105 04 0.6 9.3
Point #3 54 0.2 04 50 0.1 04 45 0.0 04
—0.0 57 0.6 0.0 53 0.6 0.0 49 0.6
2.1 1.0 9.7 1.2 0.8 93 04 0.6 88
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TABLE 6. Variance-Covariance (2 km Steps)

— 0 km 2 km 4 km 6 km 8 km 12 km
() & @ @ (®) (6) @
0 km 13.63 11.71 9.73 7.74 573 2.07
2 km 11.71 10.53 9.31 8.07 6.82 429
4 km 9.73 9.31 8.83 8.35 7.86 6.46
6 km 7.74 8.07 8.35 8.63 8.89 8.63
8 km 5.73 6.82 7.86 8.89 9.90 10.78
12 km 2.07 4.29 6.46 8.63 10.78 15.47

Since many computations use adjacent observations, covariance relevancy
increases. The distances between measurements in common cases—i.e., €l-
evation extraction from DTM databases—are usually very short (usually
around fifty or a hundred meters). The correlation between measurements in
such cases approaches nearly 100%.

ACCURACY ESTIMATE IMPLEMENTATION

Accuracy estimation can be divided into several levels of complexity when
implemented on direct measurement, on derived applications, or on DTM
databases and applications. Accuracy estimation on direct measurements is,
as stated, the simplest of all, and all that is needed in such cases is to use
(12) to extract the relevant variance, usually the altimetric values. However,
most applications, being based on measured data, involve several measure-
ments related by computation. Such cases mandate taking into account the
interrelationship between the measurements. The accuracy estimate evalua-
tion of the computation result will be calculated by determining the error
propagation (5, = F* 2 . *F") as a function of the computation formula.
For a given function [C = f(x;, yi, ki, . - - Xu Ym» Z»)], F is determined by

F=[a_fa_fa_f...a_f3f_z):] a13)
ax, 6y1 621 axn 3}’u azn

The following sections present the implementation of, and discuss aspects
of, the accuracy estimate effect. Implementation on direct measurements is
presented using the profile measurement application.

Profiles

A profile is defined as a set of measurements along a line, usually obtained
by direct measurement or computed by DTM interpolation. The profile dis-
cussed here was generated by direct measurement. An accuracy estimate for
a profile is essential for evaluating derived applications, such as evaluating
the volume SD, evaluating the visibility determination SD, etc.

Profile accuracy is evaluated by determining the variances of the altimetric
component. The variance for each data point is extracted from its variance-
covariance matrix. Its graphical representation is depicted in Fig. 2 (the pro-
file is represented by a thick line while the SD buffer is represented by thin
lines).

Accuracy Estimate for Calculated Distance

A calculated planimetric distance is a simple and commonly used function
for the purpose of distance evaluation. The distance is defined by the well-
known equation
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FIG. 2. Profile SD

D=Vmu— %)+ O — y)

Its SD is usually evaluated by using a variance-based error propagation,
and by assuming an equal grecision in coordinate axes with no correlation:
m3 = mj = mp, = m}, = m’ (where m denotes the accuracy estimate of the
coordinates). The SD is given by m} = 2xm?.

By using the matrix form of the error propagation (where the variance-
covariance matrix is formed by extracting the planimetric variances and the
relevant covariances for each point), the SD is expressed as follows:

mp=Fx) xF" (14

where 3, , is the variance-covariance matrix of the two points, and

Fo|&dy —d —dy
“Ipbp D D

An accuracy estimate evaluated by variance only, produced a result twice
as large (i.e., half as accurate) as that evaluated by including the covariance.
In addition, the variance-based method is insensitive to the variation in the
distance between the measured points. The evaluated SD remains the same
for long distances as well as for short ones, notwithstanding the covariance
variation (as demonstrated previously).

Accuracy Estimate for Average Elevation

Computing an average elevation between two points provides another ex-
ample of the evaluation technique and the effect of covariance on the eval-
uated SD. The average elevation is defined as: A, = (h, + hy)/2.

An SD evaluation based on error propagation by variance only (using the
assumption m; = mj = m’) will lead to the following result: m n, = m12.

By using the error propagation matrix form (based on the same assumption
described above, and assuming covariance is 0.9 times the variance—a com-
mon ratio as depicted in Table 6), the average height SD is evaluated as

follows:
2 2
my 0.9m,, 0.5 _ 2
(0.5 0.5) (0.9m,2, m2 ) (0’5> = 0.95m;
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A comparison between the two variances shows that the SD evaluation
determined by including the covariances is almost twice as large as that
evaluated by variances only. Considering that the demonstrated computation
is similar to extracting elevation from DTM, it can be seen that ignoring the
covariances can produce optimistic, but wrong, evaluations.

DTM APPLICATIONS

Unlike other GIS layers that represent the accurate position of each ele-
ment, the DTM layer represents only the shape of the terrain (and not the
altitude of every point). Therefore, when using the term accuracy for DTM,
questions arise about some of the qualitative and quantitative aspects, at times
mixed together. While the quantitative aspect is related to the accuracy esti-
mate of each extracted point, the qualitative aspect is mainly related to de-
termining a representative model of the terrain. Many methods have been
suggested for evaluating the qualitative aspect. For example, Doytsher and
Shmutter (1982) found profile collection to be an adequate way of repre-
senting the terrain, disapproving of grid collection due to its rigid character.
Theobald (1989) suggests contour collection combined with collection of
hydrologic features. Blace (1987) suggests terrain representations based on
grid collection combined with break lines and the collection of variations
from higher degrees like changes in curvature, etc. Li (1992) is checking the
effect of adding break lines to a regular grid to show that the addition of
break lines can reduce the grid’s density.

The terrain representation model is the basic step for elevation extraction.
This issue and the determination of its accuracy estimate is discussed next.

Accuracy Estimate of Computed Elevation

Schut (1976) presents and discusses elevation extraction strategies that vary
from strategies for grid formation from irregular data. He suggests elevation
extraction from a given data set. Two basic elevation extraction types can be
identified: extraction from a regular grid and extraction from a TIN (triangular
irregular network). While data is usually extracted from the TIN model by
linear interpolation, elevation data extracted from a regular grid can be eval-
uated using up to 16 parameters (employing bicubic polynomials)—although
usually 4-parameter (bilinear polynomial) interpolation is used.

Since all elevation extraction methods involve a transformation model, the
accuracy estimate of the extracted data should refer to the model, so that by
using the error pro[‘)_agation technique, the elevation’s accuracy is estimated
by: 2, = FyxZy*F,.

For the bilinear interpolation, elevation is computed by:

h=a+b+(X — X)) + cx(Y — Yp) +d*xX — Xp)*(Y — Xy) (15)

where a, b, ¢, d are determined by the elevations of the 4 comers—H,, H,,
H,, H,. X,, Yo = cell’s origin coordinates. Then, the accuracy estimate for the
elevations is found by

ol
ol cov
2
ag
D= Ly (16)
Cov Oy,
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The variance-covariance matrix, 2, is derived from the variance-covariance
matrix computed for the four corners forming the cell. The extracted elements
refer to elevations of the corners and to X, Y coordinates of the origin, and
contain their variances and the relevant covariances. The matrix F (at size of

X6) is defined as
oh oh dh oh oh oh
F-(mﬁﬁ‘aﬁmﬁ) an

This error propagation mechanism was formulated as the basis for evalu-
ating DTM applications.

Accuracy Estimate Evaluation

Forming the accuracy estimate mechanism facilitates the evaluation of the
affecting element. Table 7 presents a variance-covariance matrix of a given
DTM cell. The matrix can be divided into three groups: the variance-covar-
iance of the planimetric components, where the covariances are negligible;
the covariances between the planimetric and the altimetric components, which
are also negligible; and the variance-covariance between the altimetric com-
ponents, which by all accounts are the dominant part of the matrix where the
covariances display nearly 100% correlation and the variances are almost 1.5
times greater than the planimetric variances.

Such a dominant altimetric matrix gives rise to a question: what is the
actual effect of the planimetric component? Two tests were conducted, one
using a low slope of 5% along both axes and the second considering a 25%
slope. Separating the horizontal effect from the vertical produced the follow-
ing results: For the 5% slope the elevation accuracy estimate was 3, = (0.003
+ 1)*a?, while for the 25% slope the result was 3, = (0.08 + 1)*0°.

Both results show the poor effect of the planimetric components on the
accuracy estimate. Analysis of the components shows that the lack of cor-
relation within the planimetric components, as well as between them and the
altimetric elements that are highly correlated, is the reason for these results.

Another element can be added to the computed accuracy, which is related
to the terrain characteristics. Ackermann (1978) defines three affecting ele-
ments: average shape, average wave length around the DTM cell, and the
sampling density. Li (1993) suggests its evaluation using the following for-

mula:
bx (1 + 4§

W )* (S*tan a)’
where b = 17/3,072—derived from an experimental test he performed; S =
DTM cell size; a = average terrain slope; and W = average wave length.

Contour’s SD Evaluation
Evaluation of the contours SD is essential for the determination of the
vertical interval between adjacent lines. For example, an extraction of a 5 m

TABLE 7. Variance-Covariance Matrix of DTM Cell

7.95 024 1.83 1.85 1.86 1.85
0.24 ’ 8.28 0.86 0.90 0.90 0.90
1.83 0.86 12.34 12.39 12.35 12.33
1.85 0.90 12.39 12.45 1241 12.39
1.86 0.90 12.35 1241 12.38 12.35
1.85 0.90 12.33 12.39 12.35 12.33
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interval contours from a DTM grid with 5 m precision will generally produce
unreliable contours. The aim of the contour accuracy estimate is to define
the tolerance (presented as a buffer) for each contour, and by overlaying them,
to be able to determine a credible vertical interval.

Contour extracted from DTM is computed by interpolation techniques
where the path is defined by a set of calculated points at the same elevation.
The contour accuracy is, therefore, evaluated by the accuracy of the computed
point (the SD of each point is determined by the mechanism described pre-
viously). The evaluated SD refers to the altimetric plane, while the desired
tolerance refers to the planimetric plane. The translation of altimetric SD to
its planimetric description is performed by relying on the relief shape (its
slope). A function that mediates between the altimetric plane to the horizontal
plane is defined by the interpolation function. The ratio A “elevation’’/A
““position’” is expressed by

dh dh

el AR O G P ——

(18)

Contour tolerances can be generated by converting the altimetric SD to a
planimetric SD and by computing the gradient for each point. These toler-
ances are presented by buffer generation. Fig. 3 illustrates these buffers (rep-
resented by thin lines).

The generated buffers are not uniform in shape or characteristics. Com-
parisons with buffers that would have been generated by direct photogram-
metric contour extraction, where the buffers would have parallel the contours,
emphasizes this aspect. Figs. 3 and 4 illustrate the effect of the shape of the
relief on the buffer characteristics.

Fig. 4(a) represents a window that was extracted from Fig. 3, where the
terrain is characterized by a sharp slope. The buffer edges are parallel and
relatively close to the contour path. These characteristics are explained by
the sharp slope that transforms large differences in elevation to small differ-
ences in position, and the negligible effect of slope variation explains the
edge’s parallel shape. In contrast, Fig. 4(b) represents a window where the
terrain is characterized by a moderate slope. The buffers here are wider than

FIG. 3. Contours with SD Buffers
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FIG. 4. Slope Effect on SD Buffers

those of Fig. 4(a) and their edges are more sensitive to slope variation, thus
being not always parallel to the contour path.

SUMMARY

The paper presents a direct approach to accuracy estimate evaluation, and
an analysis of the factors affecting ground coordinates accuracy. An analysis
of the results has shown that ignoring the accuracy estimate of the measure-
ments can lead to biased results. In addition it was shown that, due to the
accuraCy estimate variation throughout the model and the dominant values
of covariances, no fixed value that represents the accuracy can be determined.

The implementation of the mechanism was presented for the accuracy es-
timates of both direct photogrammetric measurements and of applications
based on the measurements. The implementation shows that, notwithstanding
its mathematical complexity, the method can be easily implemented within
GIS databases and could facilitate the precise evaluation of spatial data and
spatial analysis. Due to the number of applications based on the DTM layer,
special emphasis was devoted to demonstrating the mechanism implementa-
tion itself and on several derived applications.
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