
Converting dual f isheye images into a spherical

(equirectangular) projection

Written by Paul Bourke

August 2016

See also: Fundamental parallax error when blending images from multiple cameras

The source code implementing the projections below is only available on request for a small

fee. It includes a demo application and an invitation to convert an image of your choice to

verify the code does what you seek. For more information please contact the author.

Introduction

The following presents one method by which two fisheye images, with sufficient apertures,

can be combined to form one spherical (equirectangular) projection. It is one of two main

approaches, this is a purely geometric algorithm, the alternative is to detect feature points

between the two overlapping fisheye images and perform a warp/blend.

A "fisheye" image is taken to mean a projection defined as a circular fisheye, namely radially

symmetric in longitude and with latitude proportional to the radius from the center of the

fisheye circle. Most lenses do have some non-linearity and this is a relatively straightforward

correction to make. A fisheye is defined for any angle, 180 being the most common but in the

context here one requires greater than 180 degrees. The fisheye circle may be smaller than

the image frame it is contained in (sensor size) or it may be larger, so the circle is clipped.

Both these situations are common for real fisheye images and camera sensors and as such

need to be dealt with.

Implementation

The algorithm described here is tested with a command line utility that accepts various

command line option and reads a parameter file describing attributes of the fisheye images.

The usage string is as follows.

Usage: dualfish2sphere [options] parameterfile

Options

 -w n sets the output image size, default: 4096

 -a n sets antialiasing level, default: 2

 -b n longitude width for blending, default: 0

 -q n blend power, default: 1

 -e n optimise over n random steps, default: off

https://paulbourke.net/dome/
https://paulbourke.net/dome/
https://paulbourke.net/miscellaneous/parallaxerror/
https://paulbourke.net/miscellaneous/parallaxerror/
https://paulbourke.net/
https://paulbourke.net/

 -p n n n range search fov, center and rotations, default: 10 20 5

 -c s1 s2 input filename, overwrite file specified in parameter file

 -o s output file name, default: derived from input name

 -m n specify blend mid angle, default: 180

 -f create remap filters for ffmpeg, default: off

 -d debug mode, default: off

The algorithm, as with many of this nature, considers each pixel in the output image and

determines the best estimate from the input images. Antialising here is performed using a

simple supersampling approach, each pixel in the output image is sampled multiple times at

different subpixel positions, the best estimates from the input images are averaged together.

For fisheye images greater than 180 degree aperture, the two overlapping halves of their

projection into equirectangular space are blended together using a simple linear multiplicative

blend function.

The parameter file consists of a series of lines consisting of a keyword and value pair. At the

very least the file must contain two IMAGE: keywords, the modifier keywords can appear in

any order and apply to the previously defined IMAGE:. Noting that the order in which the

rotate keywords appear determines the order in which they are performed. An example

parameter file is given below, the meanings of the keywords should be clear. A line starting

with a "#" is a comment line, the rest of the line will be ignored. All angles are defined in

degrees and all coordinates are defined in pixels.

left image

IMAGE: sample.tga

RADIUS: 904

CENTER: 959 970

APERTURE: 190

ROTATEZ: -1.2

ROTATEX: 0

ROTATEY: -90

right image

IMAGE: sample.tga

RADIUS: 904

CENTER: 2879 948

APERTURE: 189

ROTATEX: -2

ROTATEY: 90

In the above the two fisheye images are assumed to be in the same image, one on the left of

the other although the algorithm isn't affected by the order. The software also handles the

case where the two fisheyes are located within different files. CENTER: defines the center of

the fisheye circle (origin is the top left corner of the image). RADIUS: is the radius of the

fisheye circle that matches the given APERTURE:. The conventions for a single file containing

two fisheye images is given below.

Note the extreme generality of these defining parameters, the fisheye images need not have

the same aperture, radius, or position in the image. This is largely to deal with integrated dual

fisheye systems that, in the real world, are rarely perfect. For example the lenses are not

always on the same optical axis and there is variation between the optics of any two fisheye

lenses.

The various rotation angles provide a mechanism by which corrections can be made to the

fisheye camera/lens system, for example if they don't share the same optical axis. The fisheye

lens/camera is assumed to be looking down the y axis, so ROTATEY: serves to roll the

fisheye. The x axis is assumed to be to the right, so a ROTATEX serves to correct for the

fisheye tilt. The z axis is up so ROTATEZ: serves to pan the fisheye. Note the since the

algorithm operates in reverse (from the output image to the input fisheye) the rotational

transformations act in the reverse order to which they appear in the parameter file.

Example

The following example will illustrate the main features of the algorithm implementation. It will

be based upon two separate fisheye images, each with an aperture of 210 degrees.

In this somewhat artificial example the left fisheye above is tilted up by 10 degrees. The right

fisheye above is rotated clockwise off the optical axis by 5 degrees. The parameter file is

given below.

Example for online example

first fisheye

IMAGE: exampleleft.tga

APERTURE: 210

RADIUS: 1024

CENTER: 1024 1124

ROTATEX: -10

second fisheye

IMAGE: exampleright.tga

CENTER: 1124 1024

RADIUS: 1024

APERTURE: 210

ROTATEY: -5

Each fisheye is located in a different part of the image (sensor) plane. The resulting panorama

after compensating correctly for these camera/fisheye errors is shown below.

https://paulbourke.net/dome/dualfish2sphere/exampleleft.jpg
https://paulbourke.net/dome/dualfish2sphere/exampleleft.jpg
https://paulbourke.net/dome/dualfish2sphere/exampleright.jpg
https://paulbourke.net/dome/dualfish2sphere/exampleright.jpg

So how does this work? Each fisheye, assuming it has an aperture of at least 180 degrees

captures half the visible world, another fisheye pointing in the opposite direction captures the

other half. It should therefore be possible to merge the two fisheye images together to form a

complete equirectangular projection, which defines the whole visible world. The left fisheye

above mapped into equirectangular space is shown below, it fills more than half the

equirectangular image because the lens is 210 degrees. Some additional notes and

implementation of converting fisheye to equirectangular images can be found here.

https://paulbourke.net/dome/dualfish2sphere/example_sph.jpg
https://paulbourke.net/dome/dualfish2sphere/example_sph.jpg
https://paulbourke.net/dome/fish2/
https://paulbourke.net/dome/fish2/

Repeating for the right hand fisheye above gives the following, noting that it generally covers

the second half of the equirectangular image and in this case is continuous across the 0 to

360 agle wrap.

https://paulbourke.net/dome/dualfish2sphere/diagram2.jpg
https://paulbourke.net/dome/dualfish2sphere/diagram2.jpg
https://paulbourke.net/dome/dualfish2sphere/diagram3.jpg
https://paulbourke.net/dome/dualfish2sphere/diagram3.jpg

As long as the fisheyes have an aperture greater than 180 degrees there is some image

overlap to blend the two halves together. The two images with a blend zone of 15 degrees (75

degrees to 105 degrees) are given below. The final image is achieved by simply adding these

on a pixel by pixel basis.

https://paulbourke.net/dome/dualfish2sphere/diagram4.jpg
https://paulbourke.net/dome/dualfish2sphere/diagram4.jpg

Notes

• Fisheye angles of 190 degrees or more are required for a satisfactory blend zone, 10

degrees.

• The discussion here does not address the fundamental issues of parallax error in real

dual fisheye systems where the nodal points of the lenses do not coincide. A perfect

blend can occur at any one distance but not at all distances.

https://paulbourke.net/dome/dualfish2sphere/diagram5.jpg
https://paulbourke.net/dome/dualfish2sphere/diagram5.jpg

Automatic optimisation of parameters for dualfish2sphere

April 2017

Described here is an additional utility for dualfish2sphere that, given an initial guess of the

parameters, attempts to find the optimal values. Optimal is defined by the parameters that

result in the smoothest transition across the two blend zones. The following fisheye pair will be

used to illustrate this algorithm.

https://paulbourke.net/dome/dualfish2sphere/diagram.pdf
https://paulbourke.net/dome/dualfish2sphere/diagram.pdf
https://paulbourke.net/dome/dualfish2sphere/
https://paulbourke.net/dome/dualfish2sphere/

Instructions

1. Estimate the parameters and create the parameter file for dualfish2sphere. The important

parameters for the optimisation are the center of the fisheye and aperture. If there are

rotations greater than a few degrees, estimate those also. The author generally uses

PhotoShop for this, using a combination of the circular selection tool to estimate the position

of the fisheye, snapping ruler guides to form the rectangle around each fisheye and the center,

and finally the rectangular selection tool and info panel to read off the values of the center.

https://paulbourke.net/dome/dualfish2sphere/outdoor.jpg
https://paulbourke.net/dome/dualfish2sphere/outdoor.jpg

The software will randomly search for best fit within a chosen range around the estimates

above, the better the estimate the more likely and faster the fit will be found. By default the

range of search is +-10 degrees for the aperture, +-20 pixels for the center of the fisheye and

+-5 degrees for each rotational parameter. For example, if the estimate of the aperture is 200

degrees, the software will search between 190 and 210 degrees. The range can be adjusted

using the -p option.

An initial parameter file might be as follows.

left

IMAGE: outdoor.tga

RADIUS: 905

CENTER: 970 980

APERTURE: 190

ROTATEY: 7

right

IMAGE: outdoor.tga

RADIUS: 905

CENTER: 2920 940

APERTURE: 190

ROTATEY: -7

The resulting equirectangular projection is as follows. A blend region of 10 degrees is used,

for this example the command line might be

https://paulbourke.net/dome/dualfish2sphere/outdoor_ps.jpg
https://paulbourke.net/dome/dualfish2sphere/outdoor_ps.jpg

 dualfish2sphere -w 3000 -b 10 -a 2 outdoor.txt

Note the poor alignment in the red ellipse regions.

2. Run dualfish2sphere in optimisation mode, see -e option. One wants this to run fast so

choose a smallish image, say 1000 pixels. Don’t need antialiasing so set that to 1. Must use

blending because it is across the blend zone that the error metric works, say 5 or 10 degrees.

For example the command line might be

 dualfish2sphere -w 1000 -b 10 -e 100000 -a 1 outdoor.txt

Each time the software finds a better estimate it will save a parameter file. After the requested

100000 steps the best parameter set is given below, note this is in the format of a usual input

parameter file for dualfish2sphere.

Optimisation step 22924 of 100000

Error: 1137.68

delta aperture: 5 degrees

delta center: 20 pixels

delta theta: 5 degrees

blend width: 10 degrees

image 1

IMAGE: outdoor.tga

RADIUS: 905

CENTER: 978 991

Was: 970 980

https://paulbourke.net/dome/dualfish2sphere/outdoor_sph.jpg
https://paulbourke.net/dome/dualfish2sphere/outdoor_sph.jpg

APERTURE: 192.3

Was: 190.0

ROTATEY: 7.0

ROTATEX: 0.3

ROTATEZ: -0.7

ROTATEY: 0.1

image 2

IMAGE: outdoor.tga

RADIUS: 905

CENTER: 2919 950

Was: 2920 940

APERTURE: 190.0

Was: 190.0

ROTATEY: -7.0

3. Check that the final parameters of best fit are not close to the range used for the random

search. If they are then it may mean you have missed the best value for that parameter. Use

the optimal parameter file to create the final image, and subsequent conversions.

 dualfish2sphere -w 3000 -b 10 -a 2 outdoor_08.txt

The resulting equirectangular is shown below.

Notes

• It is important to run the optimisation on a visually rich scene, the metric the algorithm

https://paulbourke.net/dome/dualfish2sphere/outdoor_08_sph.jpg
https://paulbourke.net/dome/dualfish2sphere/outdoor_08_sph.jpg

uses is to calculate the squared difference between corresponding pixels in the blend

zone.

• In general, due to parallax errors I suggest one would create 2 or 3 optimal parameter

files for different types of scene. One would use the appropriate one depending on the

relative depth of the scene and the important depth. So for example, the best parameter

file for a group of people sitting around the camera may be different than the parameter

file for a landscape scene.

• The parameter files only need to be recomputed for a new camera rig or if the

optical/geometric properties of the camera rig change.

• It is not necessary to search through the parameter space of the radius of the fisheye.

This is because the radius and aperture are not independent, indeed the radius is

defined as the distance at which the field of view is the aperture value.

Remap fi l ters for f fmpeg

February 2022

The above applies to still image pairs, so in order to convert a pair of movies one needs to

extract the frames, convert each one, and then rebuild the movie. The following describes the

generation of remap files by dualfish2sphere such that a movie can be converted. The

complication is that ffmpeg remap filters are 1-to-1 mappings whereas we require a 2-to-1

mapping across the blend zones. To address this we create two sets of remap files that each

convert one of the fisheye image into the corresponding section of an equirectangular.

So, for example one might create the remap filters as follows

 dualfish2sphere -w 3840 -f -b 10 params.txt

The two halves, with a 10 degree overlap, can be converted to an equireangular as follows

 ffmpeg -i front.mp4 -i front_x.pgm -i front_y.pgm -lavfi remap \

 -pix_fmt yuv420p front360.mp4

 ffmpeg -i back.mp4 -i back_x.pgm -i back_y.pgm -lavfi remap \

 -pix_fmt yuv420p back360.mp4

The blend mask can be applied to both equirectangular images as follows. Note that the mask

backmask.png and frontmask.png should be the invert of each other and the same

dimensions as the equirectangular movies.

ffmpeg -i front360.mp4 -i frontmask.png \

 -filter_complex "[0:v] format=rgba [bg]; [1:v] format=rgba [fg]; [bg][fg]

 blend=all_mode='multiply':all_opacity=1, format=rgba" \

 -c:a copy -pix_fmt yuv420p \

 frontmasked.mp4

ffmpeg -i back360.mp4 -i backmask.png \

 -filter_complex "[0:v] format=rgba [bg]; [1:v] format=rgba [fg]; [bg][fg] \

 blend=all_mode='multiply':all_opacity=1, format=rgba" \

 -c:a copy -pix_fmt yuv420p \

 backmasked.mp4

The frontmask.png might be as follows, the horizontal extent of the blend needs to be less

than the blend (-b) chosen in the dualfish2sphere stage.

And finally the two halves can be combined by adding them together.

 ffmpeg -i backmasked.mp4 -i frontmasked.mp4 \

 -filter_complex "[0:v] format=rgba [bg]; [1:v] format=rgba [fg]; [bg][fg] \

 blend=all_mode='addition':all_opacity=1, format=rgba" \

 -c:a copy -pix_fmt yuv420p \

 combined.mp4

All the above can be added to a single ffmpeg script without the (undesirable) need to

generate the intermediate files ... this will be left as an exercise to the reader.

https://paulbourke.net/dome/dualfish2sphere/frontmask.png
https://paulbourke.net/dome/dualfish2sphere/frontmask.png

