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Abstract

One of the practical impediments to the adoption of long focal length lenses in
close range photogrammetry is the difficulty in network exterior orientation and self-
calibration that can be encountered with the collinearity equation model when the
camera field of view is smaller than around 10�. This paper reports on an investiga-
tion that examined two different avenues for improving the self-calibration of long
focal length cameras. The first is a re-examination of the linearisation of the collin-
earity equations with additional calibration parameters, and especially determina-
tion of the coefficients in the design matrix corresponding to the interior
orientation elements. The second is a new approach to the calculation of object space
coordinates by employing an orthogonal projection model that can be formulated as
a bundle adjustment with self-calibration. Accuracy aspects of both approaches are
discussed and test cases employing both zoom and macro lenses are presented.

Keywords: automatic camera calibration, bundle adjustment, close range photo-
grammetry, long focal length lenses, macro lenses, orthogonal projection, self-

calibration, zoom lenses

Introduction

Close range photogrammetry, as the name suggests, has been traditionally limited to short
to medium camera-to-object distances. With the growing use of off-the-shelf digital SLR
cameras for photogrammetric measurement, however, there are emerging requirements to
perform measurements over: (a) long distances, for applications in construction engineering,
deformation monitoring and traffic accident reconstruction; as well as (b) very short distances
for applications such as digital documentation and 3D visualisation of cultural heritage objects
via image-based approaches. Such measurements often require the use of long focal length
lenses both to keep the spatial resolution high and to optimise the angular measurement
precision. It has long been recognised that there can be practical impediments to the adoption
of very long focal length lenses on small format cameras, these centring principally upon
potential difficulties in analytical orientation and, consequently, self-calibration. As focal
length increases, so the field of view becomes narrower. This can impact adversely on the
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performance of the conventional central perspective, collinearity equation model, since the
bundle of rays can approach, in effect, a parallel projection.

Fully automatic camera self-calibration generally employs object point arrays in which
some, or all, of the targeted points are coded. The data processing is nowadays a ‘‘push one
button’’ operation and, so long as well-known principles such as convergent imaging, the use
of orthogonal camera roll angles and, desirably, use of a 3D target distribution are adopted, a
successful outcome can be anticipated for medium- and wide-angle lenses. In applying
network orientation with self-calibration to images with very narrow fields of view, however,
problems can arise through over-parameterisation, ill-conditioning and subsequent numerical
instability in the normal equations of the bundle adjustment. The appearance of numerical
problems might be expected when the field of view drops below 10� (Stamatopoulos et al.,
2010), which is equivalent to a 200mm lens on a 35mm format digital SLR camera. The
recovery of satisfactory camera calibration parameters is often precluded in such ‘‘weak
geometry’’ cases due to linear dependencies that arise between the interior and exterior
orientation parameters.

The non-linearity of the collinearity equations is considered an inherent obstacle when it
comes to the self-calibration of long focal length lenses, since deterioration of the linear
independence of the interior and exterior orientation parameters can be anticipated. This
partially accounts for why recent research on this topic has been focused more on the
development of alternative linear models to accommodate such network geometries. For
example, Ono and Hattori (2002) developed an orthogonal projection model to address the
issue of long distance measurements in close range photogrammetry. Even though their model
was successful, it had limitations in that the calibration of interior orientation elements was
ignored and object space control points were required for the calculation of the initial exterior
orientation parameters. For the measurement of small objects, Rova et al. (2008) implemented
a parallel projection model that requires parallel projection images taken with telecentric
lenses, the bundle adjustment incorporating a simplified interior orientation model. For either
of these two cases, a fully automatic self-calibration procedure was precluded.

The development of an automated calibration process for consumer grade digital cameras
with long focal length lenses forms the topic of this paper, the aim of the development being
twofold: firstly, to improve the robustness and precision of recovery of camera interior and
exterior orientation parameters, and secondly, to extend the applicability of self-calibration to
cameras with fields of view as narrow as a few degrees.

In seeking to overcome problems encountered in the self-calibration of cameras with
lenses of very long focal length, two prospective approaches have been adopted, one centred
on the traditional collinearity equations and one on an orthogonal projection model. In the first
approach, a re-examination of the traditional linearisation of the collinearity equations with
additional parameters is carried out to reveal shortcomings that manifest themselves when long
focal length lenses are employed. The second approach centres on the development of an
alternative, orthogonal projection model that is better suited to the ‘‘difficult’’, and invariably
weaker, geometries encountered in photogrammetric networks employing cameras with very
narrow fields of view. Under the orthogonal projection model, a fully automatic camera
calibration via bundle adjustment with self-calibration is again possible.

Camera Calibration Model

The well-known eight-parameter ‘‘physical’’ camera calibration model developed by
Brown (1971) has been found to be almost universally applicable in close range
photogrammetry. For long focal length lenses, however, a careful selection of parameters
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has to be performed, especially as the correlation between interior and exterior orientation
parameters increases with increasing focal length. The photogrammetric properties of long
focal length lenses are well recognised and have previously been noted by Fryer and Fraser
(1986), Wiley and Wong (1995), Noma et al. (2002), Labe and Förstner (2004) and Fraser and
Al-Ajlouni (2006).

The calculation of the principal distance and the principal point coordinates is of equal
importance for both long and short focal length lenses, in spite of the opportunities for
projective compensation in the photogrammetric orientation of narrow field of view imagery.
Also, the radial distortion is metrically very significant and needs to be taken into account for
any photogrammetric application. Radial distortion is universally modelled via the well-
known odd-ordered polynomial expression comprising terms to the seventh order. However,
for zoom lenses the third-order coefficient K1 is usually sufficient to describe the radial
distortion profile. The maximum radial distortion occurs at the minimum zoom focal length
and for lenses exhibiting only barrel distortion it decreases as the zoom focal length increases.
For many zoom lenses there will be a zero crossing between the barrel distortion at short
focal lengths and the pincushion distortion at long focal lengths (Fraser and Al-Ajlouni,
2006).

The image coordinate correction model adopted for self-calibration of long focal length
lenses can then comprise the quite familiar four-parameter subset of Brown’s model:

xcorr ¼ x� xp þ ðx� xpÞK1r2 � x
c

dc

ycorr ¼ y � yp þ ðy � ypÞK1r2 �
y
c

dc
ð1Þ

where c is the principal distance and r is the radial distance, with

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xpÞ2 þ ðy � ypÞ2

q
:

Central Perspective Model

Partial Derivatives

Upon linearisation of the collinearity equations to form the configuration matrix A of the
observation equations for the bundle adjustment, partial derivatives with respect to the
unknown calibration parameters forming equation (1) are determined. Traditionally, this has
yielded coefficients of )1 for the parameters xp and yp, resulting in a model that has served
the photogrammetric community well for over 40 years. However, given the impact of even
the smallest inaccuracies in the ill-conditioned, and consequently unstable, equation system for
the self-calibrating bundle adjustment that can arise when cameras with very long focal lengths
are involved, it is right to look again at the determination of the partial derivatives of the image
correction model, especially the terms for the principal point coordinates.

The well-known collinearity equations can be given in the form

xcorr

ycorr

� �
¼ �c

U=W
V =W

� �
ð2Þ
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where
U ¼ r11 X � Xoð Þ þ r12 Y � Yoð Þ þ r13ðZ � ZoÞ
V ¼ r21 X � Xoð Þ þ r22 Y � Yoð Þ þ r23ðZ � ZoÞ
W ¼ r31 X � Xoð Þ þ r32 Y � Yoð Þ þ r33ðZ � ZoÞ

with rij being the elements of the rotation matrix R. Traditionally, the partial derivative terms
of the collinearity equations with respect to the calibration parameters of equation (1) in the
configuration matrix A are as follows:

! c xp yp K1

@x �U
W �1 0 ðx� xpÞr2

@y �V
W 0 �1 ðy � ypÞr2

:

However, the more correct representation, taking account of the partial differentiation
with respect to parameters xp and yp, is as the follows:

! c xp yp K1

@x
�U
W �1� K1r2 � 2�x2K1 �2K1�x�y �xr2

@y
�V
W �2K1�x�y �1� K1r2 � 2�y2K1 �yr2

where �x ¼ x� xp and �y ¼ y � yp.
It will be shown that this small expansion or correction to the configuration matrix can

greatly enhance the recovery of the interior orientation parameters in the self-calibration of
cameras with long focal length lenses, even though the magnitude of K1 might only be of the
order of 10)5. In situations where the correlation between camera parameters is not high, the
presence of small errors in the coefficients of the A matrix might not have a significant impact
upon interior orientation parameter estimation, and consequently upon the exterior orientation
and object space coordinates. However, the opposite can be true where there is strong
projective coupling, as with narrow field of view imagery.

Even though a four-parameter correction model has been selected as appropriate for long
focal length lenses, it is always possible to add further lens distortion parameters. For most
lenses, the additional parameters will not lead to increased accuracy. However, in cases where
the additional parameters are warranted, the partial derivatives of the principal point offset will
involve additional terms, calculated as shown above.

Orthogonal Projection Model

The mathematical formulation of the orthogonal projection model can be presented in two
steps. The first is the derivation of the more generic affine model and the second is formulation of
the orthogonal projection model. This orthogonal projection formulation, which can be cast as a
bundle adjustment, is quite rigorous in the sense that it is derived from the central perspective
model and it is thus more than a simple empirical formulation. Such a relationship does not exist
between the affine model and the perspective model in the absence of additional constraints.

Derivation of the Orthogonal Projection Model

Under the central perspective, collinearity equation model commonly used in close range
photogrammetry, the projection of an object point into its corresponding image point is given by
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x
y
�c

2
4

3
5 ¼ k

r11 r12 r13
r21 r22 r23
r31 r32 r33

2
4

3
5 X � Xo

Y � Yo

Z � Zo

2
4

3
5 ð3Þ

where k is the scale factor, c the principal distance, rij the elements of the rotation matrix and
Xo, Yo, Zo the coordinates of the perspective centre. The scale factor k is an unknown value
which varies for each object point. If k is substituted by a constant scale parameter s,
equation (3) can be rewritten as

s
k

x
y
�c

2
4

3
5 ¼ xa

ya

� s
k c

2
4

3
5 ¼ s

r11 r12 r13
r21 r22 r23
r31 r32 r33

2
4

3
5 X � Xo

Y � Yo

Z � Zo

2
4

3
5 ð4Þ

and, by moving Xo, Yo, Zo to the left-hand side, equation (4) can be recast as

xa � X 0o
ya � Y 0o
� s

k c� Z 0o

2
4

3
5 ¼ s

r11 r12 r13
r21 r22 r23
r31 r32 r33

2
4

3
5 X

Y
Z

2
4

3
5 ð5Þ

where
X 0o
Y 0o
Z 0o

2
4

3
5 ¼ �s

r11 r12 r13
r21 r22 r23
r31 r32 r33

2
4

3
5 Xo

Yo

Zo

2
4

3
5: ð6Þ

The first and second rows of equation (5) express the affine projection model:

xa

ya

� �
¼ s

r11 r12 r13
r21 r22 r23

� � X
Y
Z

2
4

3
5þ X 0o

Y 0o

� �
: ð7Þ

This model requires the transformation from central perspective image coordinates to
affine coordinates, an operation that will be discussed later. The number of independent
parameters is eight and, geometrically, the eight orientation parameters for an affine image are
considered to be three image rotations, two translation elements X ¢o, Y ¢o the image scale s and
two rotation parameters describing the relationship between projected rays and the normal to
the image plane. By generalising equation (7), the collinearity equations’ equivalents for the
affine projection model are derived as

xa ¼ A1X þ A2Y þ A3Z þ A4

ya ¼ A5X þ A6Y þ A7Z þ A8:
ð8Þ

The affine projection model allows oblique projection to an image plane. The addition to
equation (8) of constraints for orthogonal projection then leads to the orthogonal projection
model. Because the generalised coefficients Ai, are derived from the components rij of the
rotation matrix and the scale parameter s, they should have the following properties of an
orthogonal rotation matrix:

The vectors ax ¼ ðA1;A2;A3Þ and ay ¼ ðA5;A6;A7Þ must be perpendicular to each other
and thus the dot product ax � ay has to be zero. This will force the rays from the object to be
orthogonal to the image plane, such that

A1A5 þ A2A6 þ A3A7 ¼ 0: ð9Þ
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The norms of ax and ay must be equal, meaning that the scale in the xa direction is
equivalent to that in the ya direction, so that

A2
1 þ A2

2 þ A2
3 ¼ A2

5 þ A2
6 þ A2

7: ð10Þ

The difference between the affine and orthogonal projection models is that the latter
allows only perpendicular projection to an image plane. The orthogonal projection model has
six independent parameters. The two constraints of equations (9) and (10) reduce the degrees
of freedom of equation (8) from eight to six. More precisely, the principal distance and a
distance from the projection centre to the object point along the optical axis are replaced by a
uniform scale factor. The distinction between the position of the principal point and the
horizontal position of the projection centre with respect to the image plane then becomes
meaningless. This situation can be visualised by letting the projection centre approach an
infinite position along the optical axis.

Transformation from Central Perspective to Affine Projection Coordinates

It has been recognised (Hattori et al., 2000; Ono and Hattori, 2002; Fraser and Yamakawa,
2004) that for both the affine and orthogonal projection models to be applicable, an initial
conversion from a central perspective to an affine image is warranted. It has been stated that in
very narrow fields of view this can be avoided, since the subsequent accuracy loss will be
minimal. The image coordinate transformation is the same for both the affine and the
orthogonal projection models.

Although mathematically any value can be assigned to the scale factor s, the application of
an orthogonal projection to a frame camera becomes more realistic when the scale factor is
calculated in a specific way. From a practical point of view, s is adjusted so as to scale down
the average photographing distance to the same length as the principal distance, as shown in
Fig. 1.

If H is the average photographic distance in the Z direction so that H ¼ �Z � Zo, then s can
be calculated as follows:

Fig. 1. The constant scale parameter s.
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s ¼ � r33c
�Z � Zo

¼ � r33c
H

: ð11Þ

Equation (3) can be recast as

X � Xo

Y � Yo

Z � Zo

2
4

3
5 ¼ 1

k

r11 r21 r31
r12 r22 r32
r13 r23 r33

2
4

3
5 x

y
�c

2
4

3
5 ð12Þ

and the third row of equation (12) can then be used to calculate k as

k ¼ r13xþ r23y � r33c
Z � Zo

: ð13Þ

By substituting equations (11) and (13) into (4), the expressions for transforming from
central perspective image coordinates to affine coordinates are obtained:

xa ¼
Z � Zo

H
r33c

ðr33c� r13x� r23yÞ x

ya ¼
Z � Zo

H
r33c

ðr33c� r13x� r23yÞ y:
ð14Þ

Additionally, the calibration model of equation (1) can be incorporated into the
transformation:

xa ¼
Z � Zo

H
r33c

ðr33c� r13xcorr � r23ycorrÞ
xcorr

ya ¼
Z � Zo

H
r33c

ðr33c� r13xcorr � r23ycorrÞ
ycorr:

ð15Þ

Relationship between Orientation Parameters of the Central Perspective and Orthogonal
Projection Models

The orthogonal projection model is a rigorous model that derives from the central
perspective model. Therefore, it is possible to determine the relationship of the exterior
orientation parameters between the two models. From the definition of the orthogonal
projection model it is known that:

A1 A2 A3

A5 A6 A7

� �
¼ s

r11 r12 r13
r21 r22 r23

� �
: ð16Þ

Since the norm of each of the vectors ~r1 ¼ ðr11; r12; r13Þ and ~r2 ¼ ðr21; r22; r23Þ is equal to
1, then

s2 ¼ A2
1 þ A2

2 þ A2
3: ð17Þ

From equations (10) and (16) the elements of ~r1 and ~r2 are easily determined. The vector
~r3 ¼ ðr31; r32; r33Þ can be estimated by considering the geometric features of the rotation
matrix:
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r211 þ r221 þ r231 ¼ 1

so that:

r31 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r211 � r221

q
:

Similarly:

r32 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r212 � r222

q

r33 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r213 � r223

q
:

Additionally, from the properties of the rotation matrix:

r11r31 þ r12r32 þ r13r33 ¼ 0

r21r31 þ r22r32 þ r23r33 ¼ 0:

If c is given, Zo can be calculated from equation (11) as

Zo ¼
r33c

s
þ �Z: ð18Þ

The following expression is then obtained from the general formula of the affine model
and via equation (6):

A4

A8

� �
¼ � A1 A2 A3

A5 A6 A7

� � Xo

Yo

Zo

2
4

3
5: ð19Þ

If the above equations are solved for Xo, Yo, then the location of the perspective centre is
obtained as

Yo ¼
A1A8 � A4A5 � A3A5Zo þ A1A7Zo

A2A5 � A1A6

Xo ¼ �
A4 þ A2Yo þ A3Zo

A1
:

ð20Þ

In cases where the parameters of the central perspective model are known, calculation of
the Ai parameters of the orthogonal projection model using equations (11) and (16) is quite
straightforward. Equation (11), however, requires some prior knowledge of the object point
coordinates. In the case that this calculation needs to be performed at the initial stage of the
bundle adjustment, approximate values are required. The determination of these approximate
object point coordinates will be explained in the following section.

Photogrammetric Orientation Procedure

Based on the algorithms presented, a complete, automated photogrammetric orientation
procedure can be formulated. Various steps are involved in the process of calculating initial
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approximate values, as well as at every iteration of the bundle adjustment. The procedure is
summarised in the flowchart of Fig. 2.

This process for the bundle adjustment based on the orthogonal projection model is
distinct from previously reported methods, which have tended to concentrate on experimental
verification of the appropriateness of the model. For example, in the approach of Ono and
Hattori (2002), initial approximate values for the object point coordinates needed to have been
measured by non-photogrammetric means, namely, ground survey via a total station. Perturbed
values of these coordinates were then used to calculate approximate values of the orthogonal

Fig. 2. Flowchart for automated orientation procedure based on the orthogonal projection model.
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projection orientation parameters via a direct linear transformation (DLT), which itself is prone
to instability and even numerical singularity when employed for computing the exterior
orientation of long focal length lenses.

The procedure developed here is more closely related to the typical close range
photogrammetric methodology, where exterior orientation is carried out using imagery alone,
without the provision of any externally measured object point coordinate information. First, a
relative orientation is performed between selected images using conventional, perspective
model-based coplanarity equations (Cronk et al., 2006; Luhmann et al., 2006). Approximate
exterior orientation parameters (x;/; j;Xo; Yo; Zo) and object point coordinates ðX ; Y ; ZÞ are
then obtained for the remaining images in the network via resection and spatial intersection.

The next stage involves the calculation of orientation parameters of the orthogonal
projection model. Affine image coordinates are first computed, after which there is a
determination of the parameters of the affine projection model. The optimal approach for the
recovery of the affine orientation parameters is via a least squares adjustment in which the
unknown parameters Ai in the linear system of equation (8) are computed. A subsequent least
squares adjustment with the orthogonal projection constraints contained in equations (9) and
(10) is then performed in order to acquire the orientation parameters of the orthogonal
projection model.

Once the orthogonal orientation parameters are known, the equivalent central perspective
parameters can be updated in order to reflect the current values of the orthogonal projection
model. This step is significant mostly for the calculation of both Zo and the rotation elements
that are involved in the transformation of the central perspective coordinates to their
corresponding affine values. Despite the fact that the rest of the exterior orientation parameters
are not used in the orthogonal projection model, they are nevertheless needed in order to
visualise the results since it is not possible to conceptualise an orthogonal space as a Euclidean
subspace. Additionally, a final refinement in the transformation of the central perspective to
affine coordinates is performed once all the parameters are known.

Even though the orthogonal projection model is quite similar to the central perspective
model, as has been illustrated by Ono and Hattori (2002), some differences can be expected
due to the adjustment procedures involved. Thus, a spatial intersection process using the
orthogonal projection model is carried out in order to refine the object point coordinates. The
authors’ experience is that by doing so the subsequent bundle adjustment converges in fewer
iterations.

Two bundle adjustment cases are now considered, the first being the simpler case without
self-calibration, and the second being where the calibration parameters forming equation (1)
are included.

Bundle Adjustment without Self-calibration

In the simpler case of the orthogonal projection model that is formulated as shown in
equation (8), the form of the normal equations does not differ from that of the perspective
model. The linearised form of the model can be expressed as

A1x1 þ A2x2 ¼ b ð21Þ

where x1 represents the sensor exterior orientation parameters and x2 the object point
coordinates. The Ai matrices are the corresponding configuration matrices and b is the
image coordinate discrepancy vector. The corresponding normal equations for a network of
m photos containing n measured points in the object space then follow as
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N11 N12

N12
T N22

� �
x̂1
x̂2

� �
¼ c1

c2

� �
ð22Þ

where Nij and ci represent contributions arising solely from the image coordinate
observations, x̂1 is an 8m · 1 vector of corrections to the elements of exterior orientation
(A1;A2;A3;A4;A5;A6;A7;A8) and x̂2 is a 3n · 1 vector of corrections to the coordinates of
object points (X ; Y ; Z). For the calculation of the elements of matrices Nij, the partial
derivatives of equation (8) with respect to the unknown parameters are computed with the
resulting configuration matrix being

A ¼ ½A1jA2� ¼
X Y Z 1 0 0 0 0
0 0 0 0 X Y Z 1

A1 A2 A3

A5 A6 A7

����
� �

:

The two constraints contained in equations (9) and (10) have to be accounted for with the
orthogonal projection model. This can be achieved either by bordering the normal equation
matrix of equation (22) and solving the least squares adjustment in a two-step algorithm or,
preferably, by adding the constraints to the current normal equations:

N11 þHTWH N12

N12
T N22

� �
x̂1
x̂2

� �
¼ c1 �HTWd

c2

� �
: ð23Þ

Here, H is the 2m · 8m matrix of additional constraints, d the corresponding 2m · 1
discrepancy vector and W the 2m · 2m matrix of weights assigned to the constraints. The
matrix H is formed as

H ¼ 2A1 2A2 2A3 0 �2A5 �2A6 �2A7 0
A5 A6 A7 0 A1 A2 A3 0

� �
:

In the general form presented by equation (23), the normal equations will be rank
deficient, since an explicit definition of the object space coordinate datum has not been made,
in other words no control points have been employed. In the case of the affine and orthogonal
projection models, the rank deficiency is 12 (Okamoto, 1992). In order to specify the datum,
additional constraints have to be introduced. Although there are a number of ways to impose
the required minimal constraints, the most advantageous approach is generally considered to be
the adoption of inner constraints (for example, Fraser, 1982, 1984) where the 12 linearly
independent vectors of the inner constraint matrix G satisfy the relationship AG = 0. The inner
constraint matrix can be conveniently partitioned into two components, G1 relating to the
exterior orientation parameters, and G2 relating to the object space coordinates, with the
elements for each being

GT
1 ¼

A1 0 0 0 A2 0 0 0 A3 0 0 0
0 A1 0 0 0 A2 0 0 0 A3 0 0
0 0 A1 0 0 0 A2 0 0 0 A3 0
0 0 0 A1 0 0 0 A2 0 0 0 A3

A5 0 0 0 A6 0 0 0 A7 0 0 0
0 A5 0 0 0 A6 0 0 0 A7 0 0
0 0 A5 0 0 0 A6 0 0 0 A7 0
0 0 0 A5 0 0 0 A6 0 0 0 A7

2
66666666664

3
77777777775
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and

GT
2 ¼

�X �Y �Z �1 0 0 0 0 0 0 0 0
0 0 0 0 �X �Y �Z �1 0 0 0 0
0 0 0 0 0 0 0 0 �X �Y �Z �1

2
4

3
5:

Although minimal constraints for both exterior orientation and object point coordinates
have been presented for the sake of completeness, only the constraint matrix G2 is applied in
the presented approach, in order to achieve minimum mean variance for the object space
coordinates (Fraser, 1982). The bordered normal equations then take the following form, from
which the solution vector X̂ and the covariance matrix Qx̂ can be obtained:

N11 þHTWH N12 0
N12

T N22 G2

0 G2
T 0

2
4

3
5 x̂1

x̂2
k

2
4

3
5 ¼ c1 �HTWd

c2
0

2
4

3
5: ð24Þ

Bundle Adjustment with Self-calibration

The complete orthogonal projection model can be found by combining equations (8), (15)
and (1):

Z � Zo

H

� �
r33c x� xp þ x� xp

� 	
K1r2

� 	
r33c� r13 x� xp þ x� xp

� 	
K1r2

� 	
� r23 y � yp þ y � yp

� 	
K1r2

� 	
! 
:::

::: A1X � A2Y � A3Z � A4 ¼ 0

Z � Zo

H

� �
r33c y � yp þ y � yp

� 	
K1r2

� 	
r33c� r13 x� xp þ x� xp

� 	
K1r2

� 	
� r23 y � yp þ y � yp

� 	
K1r2

� 	
!
:::

 

::: A5X � A6Y � A7Z � A8 ¼ 0:

ð25Þ

This non-linear model involves both observations and unknown parameters, which
necessitates linearisation to the following form for subsequent bundle adjustment:

A1x1 þ A2x2 þ A3x3 þ Bvþ w ¼ 0: ð26Þ

Here, A1;A2;A3 are configuration matrices for interior and exterior orientation parameters
and object point coordinates, respectively; B is the matrix of partial derivatives with respect
to the observations; and w is the functional value corresponding to the approximate
parameter values and observed image coordinates. The resulting normal equations for the
network of l cameras andm photos containing nmeasured points in object space then follow as

N11 N12 N13

N12
T N22 N23

N13
T N23

T N33

2
4

3
5 x̂1

x̂2
x̂3

2
4

3
5 ¼ c1

c2
c3

2
4

3
5 ð27Þ

where the subscripts 1, 2 and 3 now relate to camera calibration parameters, exterior
orientation and object point coordinates, respectively. Thus, x̂1 is a 4l · 1 vector of
corrections to elements of interior orientation ðc; xp; yp;K1Þ, x̂2 is an 8m · 1 vector of
corrections to elements of exterior orientation (A1;A2;A3;A4;A5;A6;A7;A8), and x̂3 is the
3n · 1 vector of corrections to the point coordinates (X, Y, Z). In order to facilitate a more

Stamatopoulos and Fraser. Calibration of long focal length cameras in close range photogrammetry

� 2011 The Authors

350 The Photogrammetric Record � 2011 The Remote Sensing and Photogrammetry Society and Blackwell Publishing Ltd



straightforward calculation of partial derivatives in the linearisation of equation (25), the
rotation angles rij can be expressed in terms of the orthogonal orientation parameters and
considered as constants along with the term (Z - Zo)/H. The linearisation of the principal point
offset should use the complete form of the correction model as explained earlier, in order to
obtain proper correction values. By naming the two expressions of equation (25) as fx and fy,
the configuration matrix A can be presented in terms of its component matrices Ai as follows:

A ¼ A½ 1 A2j A3�j

¼

@fx

@c
@fx

@xp

@fx

@yp

@fx

@K1

@fy

@c
@fy

@xp

@fy

@yp

@fy

@K1

2
6664

��������
. . .

. . .
�X �Y �Z �1 0 0 0 0

0 0 0 0 �X �Y �Z �1
�A1 �A2 �A3

�A5 �A6 �A7

����
����

�
:

The matrix of partial derivatives with respect to the observations will have the following
form:

B ¼
@fx
@x

@fx
@y

@fy
@x

@fy
@y

2
64

3
75:

The expressions for the partial derivative terms of configuration matrices A1 and B can be
found in the Appendix.

In implementing the final bundle adjustment, the addition of the free network and the
orthogonal projection constraints to the normal equations needs to be performed in a two-step
algorithm since the constraints of equations (9) and (10) cannot be incorporated in the same
way as for the bundle adjustment without additional camera calibration parameters. Instead,
double bordering of the normal equation matrix is required to apply the inner and orthogonal
projection constraints, the rank defect again being 12:

N11 N12 N13 0 0
N12

T N22 N23 0 H
N13

T N23
T N33 G2 0

0 0 G2
T 0 0

0 HT 0 0 0

2
66664

3
77775

x̂1
x̂2
x̂3
k
k

2
66664

3
77775 ¼

c1
c2
c3
0
z

2
66664

3
77775: ð28Þ

This system of normal equations is initially solved without the orthogonal constraints being
applied:

x̂o ¼ �R�1c

where
R ¼ ðNþGGTÞ:

Then, the solution with the orthogonal projection constraints applied follows from

S ¼ HR�1HT

T ¼ R�1HTS�1

x̂ ¼ x̂o þ Tðz�Hx̂oÞ:
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Finally, the covariance matrix Qx̂ of the adjusted parameters can be obtained from

Qx̂ ¼ R�1 � THR�1: ð29Þ

Experimental Results and Discussion

A number of photogrammetric measurements were carried out to experimentally verify
the two proposed camera calibration approaches, namely, the collinearity equation model with
modified partial derivatives for interior orientation elements, and the orthogonal projection
model. Three test cases will be presented here, the first two involving the self-calibration of a
Nikon D200 digital SLR camera, and the third the calibration of a Nikon D80 camera. Case 1
involved a zoom lens set at 300mm (field of view of 4Æ5�), Case 2 employed a lens of 400mm
focal length (field of view of 3Æ4�) and Case 3 used a macro lens at 135mm focal length (field
of view of 10�).

Case 1—Lens of 300mm Focal Length

The seven-station, 21-image convergent geometry of Case 1 is shown in Fig. 3, the
adopted lens being a Nikon ED AF NIKKOR 70 to 300mm zoom lens, fixed at 300mm. Three
images per station were recorded, at zero, 90� and )90� roll angles, over a camera-to-object
distance of 70 m. The approximate distance between adjacent camera stations was 12 m. In
both this case and Case 2, coded retroreflective targets were employed to facilitate fully
automatic network exterior orientation and self-calibration. A total of 88 coded and 25 single-
dot retrotargets were used in Case 1, with strobe illumination being provided by an external
Nikon Speedlight SB 800 flash unit. Three such 21-image networks were recorded and
processed.

Bundle adjustments with self-calibration based on the two projection models were carried
out for the three networks. This allowed both a comparison of the results between the

Fig. 3. Seven-station, 21-image network configuration for Case 1, using a 300 mm focal length.
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collinearity and the orthogonal projection-based models and an assessment of the degree of
repeatability in the recovery of camera calibration parameters. All adjustment solutions were
obtained without any numerical stability issues and the calibrations showed a high
repeatability, consistent with the precision of recovery of the camera parameters. Table I
lists the calibration parameters obtained in one of the networks for the collinearity model with
expanded coefficients for the principal point coordinates in the configuration matrix, and for
the orthogonal projection model. It is evident that both models provide essentially identical
results.

The overall accuracy of object point coordinate determination for the same network is
summarised in Table II, where it can be seen that the two different models yielded comparable
results, with the orthogonal projection model producing marginally better accuracy in the XY
direction.

The three networks were also solved with the conventional self-calibration model
(coefficients of )1 for xp and yp in the A matrix). However, the solution was unstable and
yielded implausible results for the interior orientation parameters, with estimates of the
standard error for c, xp and yp being several millimetres. The poor determinability and
repeatability of the camera interior orientation parameters also adversely impacted upon the
accuracy of the computed exterior orientation and object point coordinates.

Case 2—Lens of 400mm Focal Length

The network geometry for Case 2, illustrated in Fig. 4, was similar to that of Case 1 but
with the following distinctions: the camera to object distance was 100m; the overall
convergence angle was somewhat less (7m between adjacent stations); and the employed focal
length was 400mm, the lens being a Nikon 80 to 400mm VR zoom lens. For this network, 94
coded and 25 single retroreflective targets were used. In addition to the primary 21-image
network, a second set of 18 images was acquired from six additional stations to independently
assess the integrity of the initial self-calibration, and especially to assess the stability of
recovery of camera parameters. The camera stations for this second network were positioned
between those of the seven-station configuration.

Table II. Precision of object point coordinates for Case 1.

Perspective model Orthogonal projection
model

rX 0Æ09 mm 1:70 000 0Æ07mm 1:88 000
rY 0Æ06mm 1:98 000 0Æ06mm 1:108 000
rZ 0Æ21mm 1:29 000 0Æ20mm 1:29 000
Mean std. error rXYZ 0Æ12mm 1:51 000 0Æ11mm 1:55 000
Rms of xy image coordinate residuals 0Æ83 lm 0Æ82 lm

Table I. Camera calibration results for Case 1, 300 mm lens (units are mm except for K1).

Perspective model Orthogonal projection model

Values r Values r

c 264Æ76 0Æ15 264Æ79 0Æ10
xp )0Æ082 0Æ002 )0Æ080 0Æ002
yp )0Æ295 0Æ003 )0Æ297 0Æ003
K1 )6Æ728e)5 6Æ9e)8 )6Æ733e)5 6Æ5e)8
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Self-calibrating bundle adjustments for the perspective and orthogonal projection models
were performed, these being again free of numerical stability issues. The estimates obtained for
interior orientation parameters for the two networks, via either of the projection models,
displayed no significant differences, even though the geometry was weaker than in Case 1 and
the field of view narrower at 3Æ4�. For this case the recovery of a stable calibration via the
collinearity equation model with a traditional additional parameter model (coefficients of )1
for xp and yp in the A matrix) was not possible, which further highlights the utility of the new
approaches.

As a final processing step for Case 2, the 21- and 18-image networks were combined in a
39-image bundle adjustment in order to improve the precision of the recovery of both
calibration parameters and object point coordinates. The results for this self-calibration
adjustment, the camera stations of which are shown in Fig. 5, are summarised in Table III.

It is noteworthy that the 80 to 400mm zoom lens of Case 2 had very pronounced
chromatic aberration which degraded image quality and thus also the accuracy of image point
centroiding. The adverse impact of chromatic aberration can be seen in the higher rms value of
image coordinate residuals, and consequently also in poorer than anticipated precision of object
point coordinate determination.

In regard to accuracy in object space in Case 2, the perspective and orthogonal models
yielded significantly different estimates of (X, Y, Z) coordinate precision. It is apparent from
Table III that the performance of the perspective model has deteriorated with the increase in

Fig. 5. Thirteen-station, 39-image network configuration for combined Case 2.

Fig. 4. Seven-station, 21-image network configuration for Case 2, with a 400 mm focal length.
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the camera-to-object distance and the longer focal length. The orthogonal model produced
markedly higher accuracy in XY coordinates (non-depth directions) and, perhaps as should be
anticipated, its relative performance is enhanced as the field of view narrows.

Whereas numerical issues did not arise in the bundle adjustments via the proposed
orthogonal projection models in Cases 1 and 2, instability issues might be anticipated in
the cases of very weak geometry (for example, only the centre three stations of Fig. 4),
compounded by poor initial estimates for the camera principal distance. In such circumstances,
which should be avoided in normal practice, the Singular Value Decomposition (SVD) can
be employed instead of inner constraint bordering in order to remove the datum defect in the
normal equations (Stamatopoulos et al., 2010). The 12 smallest singular values obtained in the
SVD can be disregarded, such that the pseudo-inverse of the normal equation matrix is
obtained. Even though the computational cost of the SVD is very high in comparison to inner
constraints, the authors’ experience is that this is a very robust approach.

Case 3—Macro Lens

A network of 27 images of the surface of a 50 cent coin formed Case 3. The images were
recorded, three each at nine basic camera station locations, using a Nikon D80 SLR camera
with a Sigma AF 105mm macro lens, from a distance of 40 cm. Fig. 6 illustrates the

Table III. Precision of object point coordinates in the 39-image combined network of Case 2.

Perspective model Orthogonal projection model

rX 0Æ12mm 1:72 000 0Æ07mm 1:132 700
rY 0Æ30mm 1:30 000 0Æ08mm 1:117 500
rZ 0Æ54mm 1:17 000 0Æ50mm 1:17 800
Mean std. error rXYZ 0Æ32mm 1:28 000 0Æ22mm 1:41 600
Rms value of xy residuals 1Æ3 lm 1Æ3 lm

Fig. 6. Twenty-seven image network configuration for Case 3.
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convergent imaging geometry employed. Since there was no focal length ring on the lens, the
principal distance value could only be guessed prior to calibration from the magnification
index, which was set to 1:3. The principal distance obtained in the subsequent self-calibration
turned out to be 134Æ8mm (field of view of approximately 10�). Seventeen coded targets
comprising half millimetre diameter black dots on normal paper were placed around the object
to facilitate automatic exterior orientation and self-calibration.

Even though the field of view of the macro lens was more than double that of the zoom
lenses employed in Cases 1 and 2, and the network displayed a strong geometry, the
conventional self-calibration model (coefficients of )1 for xp and yp in the A matrix) was
unstable and produced erroneous results for interior orientation parameters. The perspective
model approach with modified partial derivative terms, on the other hand, was able to reliably
provide a repeatable and correct solution for the camera self-calibration. Moreover, with the
resulting rms value of image coordinate residuals being 1Æ1 lm, the attained standard errors of
object space coordinates were 1Æ3 lm (1:45 000) in the surface plane of the coin and 0Æ8 lm
(1:68 000) in depth.

Concluding Remarks

Robust and reliable recovery of camera calibration parameters, and especially interior
orientation elements, via self-calibration has been a long-standing problem in close range
photogrammetric measurement involving long focal length lenses. The contribution of the
reported research work to the alleviation of this problem has been twofold. Firstly, it has been
demonstrated that much of the problem of instability in the solution of the traditional self-
calibrating bundle adjustment of narrow angle photography can be attributed to an incomplete
formulation of the partial derivatives of the extended collinearity equations with respect to
the principal point parameters. The proposed expansion of the terms for xp and yp in the
configuration matrix A will mitigate the solution instability to a considerable extent, though the
perspective model can still be expected to display shortcomings, indicated by inflated variance
estimates in the covariance matrix of parameters, as the field of view becomes narrower than,
say, 3 to 4�. In such circumstances, which correspond in practical terms to the use of very long
telephoto lenses on digital SLR cameras, the orthogonal projection model provides a viable
alternative to the collinearity approach. It facilitates accurate and reliable recovery of camera
parameters via a self-calibrating bundle adjustment, within a computational process that lends
itself to full automation.
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Résumé

L’un des obstacles pratiques à l’utilisation de lentilles à longue focale en
photogrammétrie rapprochée est la difficulté que l’on rencontre pour l’orientation
externe du réseau et de l’auto-étalonnage avec le modèle d’équations de colinéarité
lorsque le champ de vue n’excède pas 10 degrés environ. Cet article présente une
étude dans laquelle deux pistes ont été explorées pour l’auto-étalonnage de caméras
à longue focale. La première a consisté à reconsidérer la linéarisation des équations
de colinéarité avec des paramètres d’étalonnage supplémentaires en déterminant les
coefficients de la matrice design correspondant aux éléments de l’orientation interne.
La seconde est une nouvelle approche pour le calcul des coordonnées dans l’espace
objet par l’emploi d’un modèle de projection orthogonale pouvant être formulé
comme une compensation par faisceaux avec un auto-étalonnage. Des considérations
de précision sont abordées pour les deux approches et des études de cas sont
présentées dans lesquelles sont utilisés des télé-objectifs et des lentilles macro.

Zusammenfassung

Hindernisse für den Einsatz von Objektiven mit langer Brennweite in der
Nahbereichsphotogrammetrie resultieren aus dem verwendeten Kollinearitätsmodell
bei dem Schwierigkeiten bei der äußeren Orientierung des Netzwerkes und bei der
Selbstkalibrierung auftreten können, wenn der Öffnungswinkel der Kamera kleiner als
ungefähr 10� ist. Dieser Beitrag stellt eine Untersuchung vor, die zwei verschiedene
Möglichkeiten zur Verbesserung der Selbstkalibrierung langbrennweitiger Kameras
verfolgt. Die erste Möglichkeit untersucht die Linearisierung der Kollinearitä-
tsgleichungen mit zusätzlichen Kalibrierparametern und dabei insbesondere die
Bestimmung der Koeffizienten der Designmatrix im Zusammenhang mit den
Elementen der inneren Orientierung. Der zweite Ansatz stellt eine neue Methode zur
Berechnung von Objektkoordinaten durch Verwendung eines orthogonalen
Projektionsmodells vor, das wie eine Bündelausgleichung mit Selbstkalibrierung
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formuliert werden kann. DieGenauigkeitsaspekte beider Ansätze werden diskutiert und
Testfälle, mit sowohl Zoom- als auch Makroobjektiven, werden vorgestellt.

Resumen

Uno de los principales impedimentos prácticos para utilizar lentes de gran
distancia focal en la fotogrametrı́a de objeto cercano es la dificultad para determinar
la orientación externa de la red y la autocalibración al aplicar el modelo de
ecuaciones de colinealidad cuando el ángulo de campo de la cámara es menor de
unos 10�. Este artı́culo describe una investigación en la que se estudiaron dos vı́as
diferentes para mejorar la autocalibración de las cámaras de gran distancia focal.
La primera es una revisión de la linealización de las ecuaciones de colinealidad con
parámetros de calibración adicionales, y especialmente la determinación de los
coeficientes en la matriz de diseño que corresponden a los elementos de orientación
interna. La segunda es una nueva perspectiva para el cálculo de las coordenadas del
espacio objeto empleando un modelo de proyección ortogonal que puede
denominarse ajuste por haces autocalibrante. Se discute la cuestión de la
exactitud en ambas aproximaciones y se presentan ensayos empleando tanto lentes
zoom como lentes macro.

Appendix

Expressions for Partial Derivatives Forming the Configuration Matrix A Related to Camera
Calibration Parameters

@fx

@c
¼ ðZ � ZoÞ

H
ð�r33xcorr r13xcorr þ r23ycorrð ÞÞ

r33c� r13xcorr � r23ycorrð Þ2

@fx

@xp
¼ ðZ � ZoÞ

H
r33cð�1� K1r2 � 2K1ðx� xpÞ2Þðr33c� r13xcorr � r23ycorrÞ

ðr33c� r13xcorr � r23ycorrÞ2

 

þ xcorrðr13ð�1� K1r2 � 2K1ðx� xpÞ2Þ � 2r23K1ðx� xpÞðy � ypÞÞ
ðr33c� r13xcorr � r23ycorrÞ2

!

@fx

@yp
¼ ðZ � ZoÞ

H
�2r33cK1ðx� xpÞðy � ypÞðr33c� r13xcorr � r23ycorrÞ

ðr33c� r13xcorr � r23ycorrÞ2

 

þ xcorrðr23ð�1� K1r2 � 2K1ðy � ypÞ2Þ � 2r13K1ðx� xpÞðy � ypÞÞ
ðr33c� r13xcorr � r23ycorrÞ2

!
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@fx

@K1
¼ ðZ � ZoÞ

H
r33cðx� xpÞr2ðr33c� r13xcorr � r23ycorrÞ

ðr33c� r13xcorr � r23ycorrÞ2

 

þ xcorrðr13ðx� xpÞr2 þ r23ðy � ypÞr2Þ
ðr33c� r13xcorr � r23ycorrÞ2

!

@fy

@c
¼ ðZ � ZoÞ

H
�r33ycorrðr13xcorr þ r23ycorrÞð Þ
ðr33c� r13xcorr � r23ycorrÞ2

@fy

@xp
¼ ðZ � ZoÞ

H
�2r33cK1ðx� xpÞðy � ypÞðr33c� r13xcorr � r23ycorrÞ

ðr33c� r13xcorr � r23ycorrÞ2

 

þ ycorrðr13ð�1� K1r2 � 2K1ðx� xpÞ2Þ � 2r23K1ðx� xpÞðy � ypÞÞ
ðr33c� r13xcorr � r23ycorrÞ2

!

@fy

@yp
¼ ðZ � ZoÞ

H
r33cð�1� K1r2 � 2K1ðy � ypÞ2Þðr33c� r13xcorr � r23ycorrÞ

ðr33c� r13xcorr � r23ycorrÞ2

 

þ ycorrðr23ð�1� K1r2 � 2K1ðy � ypÞ2Þ � 2r13K1ðx� xpÞðy � ypÞÞ
ðr33c� r13xcorr � r23ycorrÞ2

!

@fy

@K1
¼ ðZ � ZoÞ

H
r33cðy � ypÞr2ðr33c� r13xcorr � r23ycorrÞ

ðr33c� r13xcorr � r23ycorrÞ2

 

þ ycorrðr13ðx� xpÞr2 þ r23ðy � ypÞr2Þ
ðr33c� r13xcorr � r23ycorrÞ2

!
:

Expressions for Partial Derivatives Forming the Configuration Matrix B Related to Image
Coordinate Observations

@fx

@x
¼ ðZ � ZoÞ

H
r33cð1þ K1r2 þ 2K1ðx� xpÞ2Þðr33c� r13xcorr � r23ycorrÞ

ðr33c� r13xcorr � r23ycorrÞ2

 

þ xcorrðr13ð1þ K1r2 þ 2K1ðx� xpÞ2Þ þ 2r23K1ðx� xpÞðy � ypÞÞ
ðr33c� r13xcorr � r23ycorrÞ2

!
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@fx

@y
¼ ðZ � ZoÞ

H
2r33cK1ðx� xpÞðy � ypÞðr33c� r13xcorr � r23ycorrÞ

ðr33c� r13xcorr � r23ycorrÞ2

 

þ xcorrð2r13K1ðx� xpÞðy � ypÞ þ r23ð1þ K1r2 þ 2K1ðy � ypÞ2ÞÞ
ðr33c� r13xcorr � r23ycorrÞ2

!

@fy

@x
¼ ðZ � ZoÞ

H
2r33cK1ðx� xpÞðy � ypÞðr33c� r13xcorr � r23ycorrÞ

ðr33c� r13xcorr � r23ycorrÞ2

 

þ ycorrðr13ð1þ K1r2 þ 2K1ðx� xpÞ2Þ þ 2r23K1ðx� xpÞðy � ypÞÞ
ðr33c� r13xcorr � r23ycorrÞ2

!

@fy

@y
¼ ðZ � ZoÞ

H
r33cð1þ K1r2 þ 2K1ðy � ypÞ2Þðr33c� r13xcorr � r23ycorrÞ

ðr33c� r13xcorr � r23ycorrÞ2

 

þ ycorrð2r13K1ðx� xpÞðy � ypÞ þ r23ð1þ K1r2 þ 2K1ðy � ypÞ2ÞÞ
ðr33c� r13xcorr � r23ycorrÞ2

! :
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