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Abstract

A man-made environment is characterized by a lot of parallel lines and a
lot of orthogonal edges. In this article, a new method for detecting the three
mutual orthogonal directions of such an environment is presented. Since real-
time performance is not necessary for architectural application, like building
reconstruction, a computationally more intensive approach was chosen. On
the other hand, our approach is more rigorous than existing techniques, since
the information given by the condition of three mutual orthogonal directions
in the scene is identified and incorporated. Since knowledge about the camera
geometry can be deduced from the vanishing points of three mutual orthog-
onal directions, we use this knowledge to reject falsely detected vanishing
points. Results are presented from interpreting outdoor scenes of buildings.
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1 Introduction

The analysis of vanishing points provides strong cues for inferring information about the
3D structure of a scene. With the assumption of perfect projection, e.g. with a pin-hole
camera, a set of parallel lines in the scene is projected onto a set of lines in the image
that meet in a common point. This point of intersection, perhaps at infinity, is called the
vanishing point. Vanishing points, which lie on the same plane in the scene, define a line
in the image, so-called thevanishing line. Figure 1 shows the three vanishing points and
vanishing lines of a cube, where a finite vanishing point is defined by a point on the image
plane and a vanishing point at infinity is defined by a direction on the image plane. When
the camera geometry is known, each vanishing point corresponds to an orientation in the
scene and vice versa.

The understanding and interpretation of man-made environments can be greatly sim-
plified by the detection of vanishing points. This has been done e.g. in the field of navi-
gation of robots and autonomous vehicles [12], in the field of object reconstruction [5] or
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Figure 1: The three vanishing points and vanishing lines of a cube.

for the calibration of cameras [4, 8, 13]. A man-made environment has two characteris-
tic properties: A lot of lines in the scene are parallel and a lot of edges in the scene are
orthogonal. In an indoor environment this is true for e.g. shelfs, doors, windows and cor-
ridor boundaries. In an outdoor environment e.g. streets, buildings and pavements satisfy
this assumption. On the basis of these properties the task of detecting the three mutual
orthogonal directions of a man-made environment has raised a lot of interest [6, 7, 12].

After a discussion of existing vanishing point detection methods in section 2, our
method is presented in section 3. Section 4 demonstrates the performance of our method
on real image data.

2 Previous Work

The majority of vanishing point detection methods relies on line segments detected in the
image. A different approach is to consider the intensity gradients of the pixel units in the
image directly [6, 14]. Since we base our method on line segments, these approaches will
be considered in the following in more detail.

The task of detecting those vanishing points, which correspond to the dominant direc-
tions of a scene, is traditionally solved in two steps. Firstly, line segments are clustered
together under the condition that a cluster of line segments share a common vanishing
point. We denote this step asaccumulator step. In the second step the dominant clusters
of line segments are searched for. We refer to this step as thesearch step.

Let us consider the accumulation step first. In order to reduce the computational
complexity of the clustering process, the unbounded imageR2 is mapped onto a bounded
space. This has the additional advantage that infinite and finite vanishing points can be
treated in the same way. The bounded space, also denoted asaccumulator space, can then
be partitioned into a finite number of cells, so-calledaccumulator cells.

Barnard [2] suggested the Gaussian sphere centred onto the optical centre of the cam-
era as an accumulator space (see figure 2). A great circle on the Gaussian sphere repre-
sents a line segment in the image and a point on the Gaussian sphere corresponds to a
vanishing point in the image. Figure 2 shows that the great circles of two line segments in
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Figure 2: The Gaussian sphere as an accumulator space.

the image plane intersect always in one point, their vanishing point. For the accumulation
of line segments, the Gaussian sphere is tessellated into accumulator cells, and each cell
is increased by the number of great circles which pass through it.

This approach was then enhanced in other works. Since Barnard chose an irregular
and quite ad hoc tessellation of the Gaussian sphere, this was improved by Quan and Mohr
[11]. Lutton [9] investigated the influence of different error types, e.g. error due to the
finite extension of the image, in the accumulation process on the Gaussian sphere. Magee
and Aggarwal [10] accumulated the projection of the intersection points of all pairs of
line segments in the image onto the Gaussian sphere. This approach is computationally
more intensive but on the other hand more accurate.

Alternative accumulator spaces were introduced by the authors [12, 3]. Brillault [3]
established an uncertainty model for a line segment. According to this model an accu-
mulator space is introduced, in which the expected uncertainty of a line segment remains
constant over the accumulator space.

A different approach for reducing the computational complexity of the accumulation
step is to apply the Hough transformation by mapping the parameters of the line segments
into a bounded Hough space [1, 14]. Tuytelaars et al. [14] applied the Hough transfor-
mation three times (Cascade Hough transformation). At different levels of the Cascade
Hough transformation a peak in the Hough space corresponds to a vanishing point and a
vanishing line respectively.

A main drawback of all techniques which transfer information from the image into a
bounded space is that the original distances between lines and points are not preserved.
Let us consider the two great circles of the two line segments in figure 2. Due to the
perspective effect of the projection from the image plane onto the Gaussian sphere the
distance between these two great circles differs when the two line segments undergo the
same movement on the image plane. Therefore, the distance between a line segment and






a vanishing point depends on their location on the image plane, i.e. the distances between
points and lines on the image plane are not translationally and rotationally invariant. This
drawback can be avoided when line segments are not transformed into a bounded space,
i.e. the image plane is chosen as the accumulator space.

In the past, more effort has been spent on the accumulation step than on the search
step. One of the reasons for this is that the directions in the scene of the searched dominant
vanishing points did not have to be orthogonal. This means that the orthogonality of the
direction of vanishing points was not treated as an additional criterion of the search step.
In [10, 11] the search step was designed in a straight forward manner. Firstly, the dominant
vanishing point, which corresponds to the accumulator cell with the most line segments,
is detected. After removing the line segments, which correspond to this vanishing point,
the search for a maximum in the accumulator space is repeated. This iterating process
stops when the number of line segments of a dominant vanishing point is below a certain
threshold. This approach is characterized by a minimal computational effort.

Recently van den Heuvel [7] developed a method for detecting the three mutual or-
thogonal directions in the scene. The orthogonal criterion was explicitly used, which
means that all combinations of three possible vanishing points have to be considered. This
higher computational effort is the main drawback compared to the approach mentioned
above. However, van den Heuvel chose one of the vanishing points manually. Coughlan
and Yuille [6] searched for two orthogonal directions in the scene by using statistics.

3 Detection of three mutual orthogonal directions

With increased computing power and without the condition of real-time performance an
approach with higher computational effort is reasonable and will be pursued here. The
basic idea of our approach is to establish a coherent and simple framework (like [7]) which
can be used for the accumulation step as well as for the search step. As accumulator space
we choose the unbounded image plane itself, which has the advantages as we already
pointed out above. As accumulator cells we choose (like [10]) the intersection points
of all pairs of line segments. We will see that despite the fact that the image plane is
unbounded, infinite and finite vanishing points can be treated in the same way.

For the search step we will establish a number of criteria, which vanishing points with
mutual, orthogonal directions have to satisfy. Since one of the criteria is the orthogonal
criterion, we obtain a higher computation effort than an easier approach (like [10, 11]).

3.1 Accumulation Step

Due to various reasons is the perspective projection of a line segment from the 3D scene
onto the 2D image not congruent with the line segment detected in the image. We denote
this perfect projection of a line segment asprojected line segment. Hence, all vanish-
ing points detection methods have to formulate either implicitly or explicitly a distance
function between a vanishing point and a detected line segment. In this context the basic
question is:How close is a projected line segments0 with vanishing pointvp to its cor-
responding line segments. In order to answer the question we represent a line segment
with the midpoint representation(mx;my; l; �s) (see figure 3 (b)). Compared to other
representations, e.g. endpoint representation, it has the advantage that the length of a line
segment is treated explicitly. We define: The perfect line segments0 of a line segments
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Figure 3: Explanation for the distance functiond(vp; s) between a line segments and a
finite vanishing pointvp (a), the midpoint representation of a line segments (b) and the
distance functiond(l; s) between a linel and a line segments (b).

has the same midpoint ass and hasvp as vanishing point. On the basis of this definition
a distance functiond(vp; s) between a vanishing pointvp and a line segments can be de-
fined as the angle� between the corresponding line segmentss0 ands. Figure 3 (a) gives
an example for a finite vanishing point. Since we need a distance functiond(l; s) between
a line l and a line segments in the search step, we define this distance as the tuple(d; �)
of the distanced betweenl and the midpoint ofs and the angle� betweens0 andl (see
figure 3 (b))1. These distance functions fulfill the requirements we state above: Finite and
infinite vanishing points are treated in the same way and the distances between points,
lines and line segments are independent of their location on the image plane. Note, with
this simple approach we disregard the error of a detected line segment and of a potential
vanishing point. The modeling of these errors would lead towards a more complex and
probabilistic framework.

On the basis of this framework, we can formulate and fill the accumulator space.
The intersection points, perhaps at infinity, of all pairs of non-collinear line segments
are considered as accumulator cells, i.e. potential vanishing points2. Since a vanishing
point in the 3D scene is a point at infinity, the corresponding vanishing point in the 2D
image cannot lie on a line segment, i.e. between the two endpoints of a line segment, with
this vanishing point. Therefore, all potential vanishing points are removed which do not
satisfy this condition. In order to fill the accumulator space, we state that a line segment
s votes for an accumulator cella if the distanced(a; s) is below a certain thresholdta
and the vanishing point does not lie on the projected line segments0, which correspond to
s. In the search step we are interested in the total vote of an accumulator cell. This vote
depends on the length of a line segment3 as well as on the distance between accepted line
segments and the accumulator cell. We define

vote(a) =
X

all accepteds of a

w1

�
1�

d(a; s)

ta

�
+ w2

�
length of s

maximal length ofs

�
(1)

1We will see later that it is unnecessary to have a scalar as distance measure.
2In the following we do not distinguish between an accumulator cell and a vanishing point.
3We assume that longer line segments are more reliable than shorter line segments.
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Figure 4: Explanation for the camera geometry and the orthogonal criterion.

as the total vote of an accumulator cella, where the weightsw1 andw2 establish this trade
off. A brute force version of the accumulator algorithm checks the acceptance of each
line segment for each accumulator cell. Afterwards the total vote of each accumulator
cell is determined. The computational effort of this algorithm isO(an) = O(n3) where
a = O(n2) is the amount of accumulator cells andn the amount of line segments.

3.2 Search Step

The task of the search step is to determine the vanishing points, which correspond to the
three mutual orthogonal directions of the scene. Due to this constraint on the vanishing
points, three different criteria for the vanishing points can be identified:Orthogonal cri-
terion, camera criterion and vanishing line criterion. The first two criteria are affiliated
with each other and we consider them first.

In [4, 8, 13] was shown that knowledge about the camera geometry can be deduced
from the vanishing points of three mutual orthogonal directions. Unfortunately, this
knowledge differs in the three different cases, in which none, one or two vanishing points
are at infinity. Since these different cases are algebraicly discussed in [8], we illustrate
and summarize them here. In order to formulate the orthogonal criterion we have to es-
tablish the geometry between the image plane and the camera. We use the same camera
model as in [8, 13], which deviates from the general perspective camera in the respect that
both image axes are assumed to be orthogonal with the same scale factor. This condition
is in general fulfilled for most real world cameras. Therefore, the only unknowns of the
camera geometry are the focal lengthf and the principle pointu0 (see figure 4).

We denote the three vanishing points on the image plane byv1; v2 andv3. Since the
vectorcvi from the camera centrec to the vanishing pointvi has the vanishing pointvi,
we can formulate theorthogonal criterionas:

hcv1; cv2i = 0; hcv1; cv3i = 0 andhcv2; cv3i = 0 whereh�; �i is the scalar product.






The question for the orthogonal criterion is: Do the vanishing pointsv1; v2 andv3 satisfy
these three equations with reasonable values foru0 andf , i.e. f 2 (0;1). We discuss
the three different cases with none, one or two vanishing points at infinity separately:

1. Three finite vanishing pointsv1; v2 andv3:
The triangle(v1; v2; v3) forms together with the principle point an orthocentric
system (see figure 4). Therefore, the intersection point of the heights of this tri-
angle defines the principle point. The size of this triangle defines the focal length
uniquely. The orthogonal criterion can be defined as the condition that each angle
of this triangle is smaller than90o.

2. Two finite vanishing pointsv1; v2 and one infinite vanishing pointv3:
The principle point lies on the line segment, which is defined by the two endpoints
v1 andv2. For real world cameras the principle point is more likely positioned
in the centre of the image. Therefore, we choose the principle point as the point,
which lies on the line segment and is closest to the midpoint of the image. With the
determining of the principle point, the focal length is uniquely defined. In this case
the orthogonal criterion is defined by the condition that the direction of the infinite
vanishing pointv3 is orthogonal to the line defined byv1 andv2.

3. One finite vanishing pointv1 and two infinite vanishing pointsv2; v3:
In this case the principle point is identical with the vanishing pointv1. The focal
length cannot be determined. The orthogonal criterion is defined by the condition
that the directions ofv1 andv2 are orthogonal.

We can now specify thecamera criterion. This criterion is fulfilled when the principle
point and the focal length are inside a certain range, in the case they are calculable.

Let us consider thevanishing line criterion. Two vanishing pointsv1 andv2 have a
vanishing line when not both vanishing points are at infinity (see figure 1). Therefore, a
line segment, which lies on the vanishing line, does vote for the two accumulator cells,
which correspond tov1 andv2. Hence, we define that two accumulator cells fulfill the
vanishing line criterion when each line segment, which vote for both accumulator cells,
lies on the corresponding vanishing line. In case both vanishing points are at infinity, the
two sets of line segments of the corresponding accumulator cells have two be disjunct.
With the distance functiond(l; s) we can check if a line segments lies on a vanishing line
l. Sinced(l; s) returns a tuple(d; �), we check ifd and� are below certain thresholds.

With the criteria developed above we can define an algorithm for the search step:

Take the accumulator cella1 with the highest votevote(a1) (see equation 1)
Go through all pairs of accumulator cells(ai; aj)

If the vanishing line criterion is fulfilled for(a1; ai), (a1; aj) and(ai; aj)
If the orthogonal criterion and camera criterion is fulfilled for(a1; ai; aj)

Calculatevote = vote(a1) + vote(ai) + vote(aj)
Take the accumulator cellsai; aj , with the highest votevote

The vanishing points which correspond to the accumulator cellsa1; ai andaj represent
the three mutual orthogonal directions of the scene. The computational effort of the search
step isO(a2n) = O(n5), wherea = O(n2) is the amount of accumulator cells andn the
amount of line segments.






4 Experimental results

Figures 5-7 show three examples, in which our method was applied. The thresholdta in
the accumulator step was set to5o, the maximal difference between the principle point
and the midpoint of the image was set to a third of the image diagonal and the range of
the focal length was not specified.

Figures 5-7 demonstrate that the three mutual orthogonal directions of the scene were
detected reliably for these images. This was even possible in a cluttered environment (see
figure 7) and with a substantial amount of outliers (see figure 6). Figure 5 (a) shows that
the accuracy for vanishing point detection is limited. The solid lines of the building and
of the street in front of the building are assigned to the same vanishing point. Indeed,
the building is rotated approximately about20o relative to the street. The dashed lines in
figure 7 (a) and solid lines in figure 7 (b), which represent the same line segments in the
image, demonstrate the vanishing line criterion.

Let us consider the processing time of the accumulation step and search step on an
Ultra Sparc 10. For 77 line segments and 737 accumulator cells the runtime was 3,50
sec for the accumulator step and 3,16 sec for the search step. A different run with 105
line segments and 1552 accumulator cells needed 9,17 sec for the accumulator step and
14,53 sec for the search step. This shows that our method is applicable when no real-time
conditions are required.

5 Discussion and future work

A new method for detecting the three mutual orthogonal directions of a man-made envi-
ronment has been presented. Since real-time performance is not necessary for architec-
tural application, like building reconstruction, a computationally more intensive approach
has been chosen. A simple and coherent framework for the accumulation step and search
step has been introduced. By using the unbounded image plane as accumulator space, the
original distances between vanishing points and line segments are preserved, compared to
techniques which transfer the line segments from the image plane into a bounded space.
In the search step, criteria for vanishing points of three mutual orthogonal directions have
been identified and incorporated. Furthermore, falsely detected vanishing points can be
rejected by examine the determined camera parameters of a simplified camera model.

The experiments have shown that the method produced good results, even for images
with a cluttered environment and with a substantial amount of outliers. In our future task
of building reconstruction we will see, if the accuracy of the detected vanishing points
is sufficient. If not, the transition from our simple framework to a more complex and
probabilistic framework might be necessary.

Especially buildings have the property that in certain poses not enough – or even none
– of the detected line segments specify a search vanishing point. Therefore, we currently
extend our method towards an approach which detects all ‘visible’, mutual orthogonal
directions of a scene.
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Figure 5: An image of the royal castle of Stockholm. The two different types of lines in
(a) and the solid lines in (b) display the vanishing points of the three mutual orthogonal
directions. The dashed lines in (b) represent the remaining line segments, which were not
assigned to one of the three vanishing points. The detected principle point of the camera
is drawn as a cross.

(a) (b)

Figure 6: An image of a residential building. The line markings are as in figure 5.

(a) (b)

Figure 7: An image of a residential building, whereat the line markings are as in figure 5.





